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Abstract 
This article presents a new approach for the exponential stability (ES) analysis of 

discrete linear time–varying systems (TVSs), which is widely used to study control 

systems in aerospace engineering. With the introduction of summation function 

for the discrete linear time–varying systems and satisfying some of its 

characteristics, a necessary and sufficient condition is obtained for the 

exponential stability of discrete linear TVSs.  
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Introduction 

 In general control system design deals with the problem of 

making a concrete physical system working according to some given 

specifications. Stability is an essential archetype in control system design 

and mathematical control theory. The main interest is the asymptotic 

behavior of solutions and different types of stabilities in the study of such 

systems. Results related to stability of different system can be found in 

Amato et al. (1993); Berger and Ilchmann (2013); Okano et al. (2006); 

Trentelman et al. (2002). Stability theory have fundamental role in the 

field of engineering and physics. Difference equations and differential 

equations are the main tools for illustrating the process of change over 

time. It is very difficult to find the solution of those systems explicitly, or 

it is very difficult to manage the solution of such equations. For well 

approximate solution various numerical methods can be used at fixed 

intervals. Also the qualitative behaviors of solutions for such system is an 

interesting issue for many mathematicians like Wu (1984); Zada et al. 

(2016, 2017); Zada and Ali (2018). 

Stability of linear time–varying system is recursive identification 

and adaptive control of a random important technical issues. To ensure the 

stability of time–varying systems in course of recursive identification the 

predicted inverse system is time–varying and class of inverse systems 

should be cramped. In stochastic sense finite-dimensional systems with 

fixed dimension can be used for the interpretation of inverse plants to find 
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conditions with the help of which the time varying system exited by a 

signal which is bounded in the sense of stochastic. 

Recently, researchers have made significant progress. There are 

mainly two types of methods used for the stability analysis of linear time–

varying systems, which are frozen time method and parallel D-spectrum 

method Mullhaupt et al. (2007); Forbes and Damaren (2011). Stability of 

linear time varying system is discussed by some of the mathematicians. 

Hill discussed the stability of both continuous and discrete time-varying 

linear systems, which describes that how the stability estimates are 

obtained in either case in terms of the Lipschitz constant for the governing 

matrices and the assumed uniform decay rate of the corresponding frozen 

time linear systems Rugh (1996); Hill and Ilchmann (2011). Bounds on 

the exponential growth of continuous/discrete time varying systems have 

been suggested by numerous authors Desoer (1970); Coppel(1978) and 

references cited therein. 

In this article, we use the idea of summation function (SF) 

approach to explore the ES of discrete linear time varying systems. In the 

previous work the author showed the ES of continuous linear time varying 

systems with the idea of integral function Yao et al. (2012). The main 

appliance of our approach is the idea of SF, which has some nice properties 

such as homogeneity, sub-additivity, convexity, common-bound and 

vertex-bound.  

 

Basic Concepts and Remarks 

 We consider the discrete system given by  

 {
Θ(𝜐 + 1) = 𝐵𝜐Θ(𝜐),    𝜐 ∈ 𝑍+,
Θ(0) = Θ0

 (1) 

where 𝐵𝜐 are matrices over 𝑅𝜐. The solution of such system is given as  

 Θ(𝜐, Θ0) = 𝐵𝜐−1𝐵𝜐−2 ⋯ 𝐵0Θ0. 
Solution 

Given that  

 Θ(𝜐 + 1) = 𝐵𝜐Θ(0),        Θ(0) = Θ0,        𝜐 ∈ 𝑍+, 
for 𝑛 = 0  

 Θ(1) = 𝐵0Θ0,                Θ(0) = Θ0, 
for 𝑛 = 1 

 Θ(2) = 𝐵1𝐵0Θ0,        Θ(1) = 𝐵0Θ0 

         

 Θ(𝜐) = 𝐵(𝜐−1)𝐵(𝜐−2)𝐵(𝜐−3) ⋯ 𝐵(0)Θ0 

 

 ⇒ Θ(𝜐, Θ0) = 𝐵(𝜐−1)𝐵(𝜐−2) ⋯ 𝐵(0)Θ0, 

which is the solution of the given system.  
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Definition 1 If 𝛩(𝜐, 𝛩0) represents the solution of the system (1) with 

initial condition 𝛩0. The system is called exponentially stable if for some 

𝑝 ∈ (0,1) and 𝑀𝑝 ∋  

 ||Θ(𝜐, Θ0)|| ≤ 𝑀𝑝𝑝𝜐−𝜍||Θ0||,   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦   𝑛 ⩾ 𝑚. 

  

Definition 2 The exponential decay rate for the system (1) is defined as  

 𝑝∗ = 𝑖𝑛𝑓{𝑝||Θ(𝜐, Θ0)|| ≤ 𝑀𝑝𝑝𝜐−𝜍||Θ0||,   Θ0 ∈ 𝑅𝜐, 𝑛 ⩾ 𝑚}. 

  

Lemma 3  The solution of the linear TVS (1) has the following properties,  

 Θ(𝜐, 𝛽Θ0) = 𝛽Θ(𝜐, Θ0),   𝛽 ∈ 𝑅 

 

 Θ(𝜐, Θ0 + Θ1) = Θ(𝜐, Θ0) + Θ(𝜐, Θ1),   Θ0, Θ1 ∈ 𝑅𝜐  

Proof. By the system (1) let us consider  

 {
Θ(𝜐 + 1) = 𝐵𝜐Θ(𝜐),    𝜐 ∈ 𝑍+,
Θ(0) = 𝛽Θ0

 (2) 

Given  

 Θ(𝜐 + 1) = 𝐵𝜐Θ(𝜐),        Θ(0) = 𝛽Θ0,        𝜐 ∈ 𝑍+ 

for 𝑛 = 0  

 Θ(1) = 𝐵0𝛽Θ0,                Θ(0) = 𝛽Θ0. 
for 𝑛 = 1  

 Θ(2) = 𝐵1𝐵0𝛽Θ0,        Θ(1) = 𝐵0𝛽Θ0 

          

 Θ(𝜐) = 𝐵(𝜐−1)𝐵(𝜐−2)𝐵(𝜐−3) ⋯ 𝐵0𝛽Θ0. 

The solution of this system is  

 ⇒ Θ(𝜐, 𝛽Θ0) = 𝐵(𝜐−1)𝐵(𝜐−2) ⋯ 𝐵(0)𝛽Θ0 

 

 ⇒ Θ(𝜐, 𝛽Θ0) = 𝛽(𝐵(𝜐−1)𝐵(𝜐−2) ⋯ 𝐵(0)Θ0) 

 

 ⇒ Θ(𝜐, 𝛽Θ0) = 𝛽Θ(𝜐, Θ0). 
And  

 Θ(𝜐, Θ0 + Θ1) = Θ(𝜐, Θ0) + Θ(𝜐, Θ1). 
Consider  

 Θ(𝜐 + 1) = 𝐵𝜐Θ(𝜐),    𝜐 ∈ 𝑍+,    Θ(0) = Θ0 + Θ1 

for 𝑛 = 0  

 Θ(1) = 𝐵0(Θ0 + Θ1),                Θ(0) = Θ0 + Θ1 

for 𝑛 = 1  

 Θ(2) = 𝐵1𝐵0(Θ0 + Θ1),        Θ(1) = 𝐵0(Θ0 + Θ1) 
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 Θ(𝜐) = 𝐵(𝜐−1)𝐵(𝜐−2)𝐵(𝜐−3) ⋯ 𝐵0(Θ0 + Θ1), 

also the solution of this system is  

 Θ(𝜐, Θ0 + Θ1) = 𝐵(𝜐−1)𝐵(𝜐−2)𝐵(𝜐−3) ⋯ 𝐵0(Θ0 + Θ1) 

 

 ⇒ Θ(𝜐, Θ0 + Θ1) = 𝐵(𝜐−1)𝐵(𝜐−2) ⋯ 𝐵0Θ0 +

𝐵(𝜐−1)𝐵(𝜐−2) ⋯ 𝐵0Θ1 

 ⇒ Θ(𝜐, Θ0 + Θ1) = Θ(𝜐, Θ0) + Θ(𝜐, Θ1). 
 

  

Definition 4 (SF)  Consider the function ℐ(. , 𝛩0) of the linear TVS as,  

 ℐ(𝜏, Θ0) = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ0)||2. 

For every fixed point 𝜏 ⩾ 0,    ℐ(𝜏, Θ0) is a relation of Θ0 only,  

 𝐼𝜏(Θ0) = ℐ(𝜏, Θ0).  

Theorem 5 (Properties of ℐ(𝜏, 𝛩0)) 

2.5.1 Homogeneity:  

 ℐ(𝜏, 𝛽Θ0) = 𝛽2ℐ(𝜏, Θ0). 
 

2.5.2 Sub-additivity: For all Θ1, Θ2 ∈ 𝑅𝜐,  

 √ℐ(𝜏, Θ1 + Θ2) ≤ √ℐ(𝜏, Θ1) + √ℐ(𝜏, Θ2). 
 

2.5.3 Convexity: For every 𝜏 ⩾ 0, √ℐ(𝜏, Θ1) is convex function, 

i.e for all Θ1, Θ2 ∈ 𝑅𝜐 and 𝛽1, 𝛽2 ⩾ 0, 𝛽1 + 𝛽2 = 1,  

 √ℐ(𝜏, 𝛽1Θ1 + 𝛽2Θ2) ≤ 𝛽1√ℐ(𝜏, Θ1) + 𝛽2√ℐ(𝜏, Θ2). 
 

2.5.4 Common-Bound: For every 𝜏 ⩾ 0, ℐ(𝜏, Θ0) < ∞ for all Θ0 ∈ 𝑅𝜐  

 ℐ(𝜏, Θ0) < 𝑐||Θ0||2, 
for some c. 

2.5.5 Vertex-Bound: 

 ℐ(𝜏, Θ𝑖) < ∞, 𝑖 ∈ {1,2,3, ⋯ 𝑛}, 
⇒ ℐ(𝜏, Θ0) < ∞ ∀ Θ0 ∈ 𝑅𝜐, where {Θ𝑖}𝑖=1

𝜐  is standard basis (SB) of 

𝑅𝜐.  

Proof. 2.5.1 Homogeneity: To prove the Homogeneity we use the 

definition (4),  

 ℐ(𝜏, Θ0) = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ0)||2. 

Now consider  

 ℐ(𝜏, 𝛽Θ0) = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, 𝛽Θ0)||2 

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||𝛽Θ(𝜐, Θ0)||2 

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍𝛽2||Θ(𝜐, Θ0)||2 

 = 𝛽2sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ0)||2 
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 = 𝛽2ℐ(𝜏, Θ0). 
  

2.5.2 Sub-Additvity: For any Θ0, Θ1 ∈ 𝑅𝜐 we need to show that  

 √ℐ(𝜏, Θ1 + Θ2) ≤ √ℐ(𝜏, Θ1) + √ℐ(𝜏, Θ2). 
Now we consider 

 𝐼𝜏(Θ1 + Θ2) = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ1 + Θ2)||2 

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍{||Θ(𝜐, Θ1 + Θ2)||2}                            

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍{||Θ(𝜐, Θ1)||2 + ||Θ(𝜐, Θ2)||2| +

2||Θ(𝜐, Θ1)||||Θ(𝜐, Θ2)||} 

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ1)||2 +

sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ2)||2 

 +sup ∑∞
𝜍=0 𝜏𝜐−𝜍2||Θ(𝜐, Θ1)||||Θ(𝜐, Θ2)|| 

 ≤ sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ1)||2 +

sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ2)||2 

 

+2√sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ1)||√sup ∑∞

𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, Θ2)|| 

 ≤ ℐ(𝜏, Θ1) + ℐ(𝜏, Θ2) + 2√ℐ(𝜏, Θ1)√ℐ(𝜏, Θ2) 

 ≤ (√ℐ(𝜏, Θ1))2 + (√ℐ(𝜏, Θ2))2 + 2√ℐ(𝜏, Θ1)√ℐ(𝜏, Θ2) 

 = {√ℐ()𝜏, Θ1 + √ℐ(𝜏, Θ2)}2, 
 taking square root  

 √ℐ(𝜏, Θ1 + Θ2) ≤ √ℐ(𝜏, Θ1) + √ℐ(𝜏, Θ2). 

 

2.5.3 Convexity: 

For every 𝜏 ⩾ 0, √ℐ(𝜏, Θ1) is convex function  for all  Θ1, Θ2 ∈ 𝑅𝜐 and 

𝛽1, 𝛽2 ⩾ 0, 𝛽1 + 𝛽2 = 1, we have  

 √ℐ(𝜏, 𝛽1Θ1 + 𝛽2Θ2) ≤ 𝛽1√ℐ(𝜏, Θ1) + 𝛽2√ℐ(𝜏, Θ2). 
By definition (4)  

 ℐ(𝜏, 𝛽1Θ1 + 𝛽2Θ2) = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, 𝛽1Θ1 + 𝛽2Θ2)||2 

 

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍{||Θ(𝜐, 𝛽1Θ1) + Θ(𝜐, 𝛽2Θ2)||2},

𝑢𝑠𝑖𝑛𝑔  𝑙𝑒𝑚𝑚𝑎(3 

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍{||Θ(𝜐, 𝛽1Θ1)||2 + ||Θ(𝜐, 𝛽2Θ2)||2 

 

 +2||Θ(𝜐, 𝛽1Θ1)||||Θ(𝜐, 𝛽2Θ2)||} 

 

 = sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, 𝛽1Θ1)||2 +
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sup ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜐, 𝛽2Θ2)||2 

 

 +sup ∑∞
𝜍=0 𝜏𝜐−𝜍2||Θ(𝜐, 𝛽1Θ1)||||Θ(𝜐, 𝛽2Θ2)|| 

 

 ≤ sup ∑∞
𝜍=0 𝜏𝜐−𝜍𝛽1

2||Θ(𝜐, Θ1)||2 +

sup ∑∞
𝜍=0 𝜏𝜐−𝜍𝛽2

2||Θ(𝜐, Θ2)||2 

 

 +2√sup ∑∞
𝜍=0 𝜏𝜐−𝜍𝛽1

2||Θ(𝜐, Θ1)|| +

√sup ∑∞
𝜍=0 𝜏𝜐−𝜍𝛽2

2||Θ(𝜐, Θ2)|| 

 

 ≤ (√𝛽1
2ℐ(𝜏, Θ1))2 + (√𝛽2

2ℐ(𝜏, Θ2))2 +

2√𝛽1
2ℐ(𝜏, Θ1)√𝛽2

2ℐ(𝜏, Θ2) 

 ≤ {√𝛽1
2ℐ(𝜏, Θ1) + √𝛽2

2ℐ(𝜏, Θ2)}2 

 

 ℐ(𝜏, 𝛽1Θ1 + 𝛽2Θ2) ≤ {𝛽1√ℐ(𝜏, Θ1) + 𝛽2√ℐ(𝜏, Θ2)}2, 
now taking square root both side  

 √ℐ(𝜏, 𝛽1Θ1 + 𝛽2Θ2) ≤ 𝛽1√ℐ(𝜏, Θ1) + 𝛽2√ℐ(𝜏, Θ2). 
 

2.5.4 Common Bound: Consider 𝜏 ⩾ 0 ∋ 𝐼𝜏(𝑦) < ∞. Suppose {Θ𝑖}𝑖=1
𝜐  

denote a SB of 𝑅𝜐, then for every 𝑦 ∈ 𝑆𝜐−1, we can find 𝛽𝑖 ⩾ 0, for 

∑𝜐
𝑖=1 𝛽𝑖

2 = 1, ∋  

 𝑦 = ∑𝜐
𝑖=1 𝛽𝑖Θ𝑖. 

Using the property of sub-additivity of 𝐼𝜏(𝑦) and Cauchy-Schwartz (CS) 

inequality in the summation form, for any 𝑦 ∈ 𝑆𝜐−1 we get that,  

 𝐼𝜏(𝑦) = √𝐼𝜏(∑𝜐
𝑖=1 𝛽𝑖Θ𝑖) 

using the homogeneity property  

 ≤ [∑𝜐
𝑖=1 𝛽𝑖√𝐼𝜏Θ𝑖]2, 

 

 ≤ ∑𝜐
𝑖=1 𝛽𝑖

2 ∑2
𝑖=1 𝐼𝜏(Θ𝑖) 

 

 ≤ 𝑐. 
Thus we have  

 𝐼𝜏(Θ) < 𝑐||Θ||2, 𝑦 ∈ 𝑅𝜐. 
 

2.5.5 Vertex Bound: We have 

ℐ(𝜏, Θ𝑖) < ∞, 𝑖 ∈ {1,2, . . . . . . . 𝑛}, ⇒ ℐ(𝜏, Θ0) < ∞, for all Θ0 ∈ 𝑅𝜐,  
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where {Θ𝑖}𝑖=1
𝜐  is a standard bases of 𝑅𝜐. 

Consider  

 𝑦 = ∑𝜐
𝑖=1 𝛽𝑖Θ𝑖. 

Using the property of sub-additivity of 𝐼𝜏(𝑦) and CS inequality in the 

summation form, for any 𝑦 ∈ 𝑆𝜐−1 we get that,  

 𝐼𝜏(𝑦) = √𝐼𝜏(∑𝜐
𝑖=1 𝛽𝑖Θ𝑖) 

 

 ≤ [∑𝜐
𝑖=1 𝛽𝑖√𝐼𝜏Θ𝑖]2 

 

 ≤ ∑𝜐
𝑖=1 𝛽𝑖

2 ∑2
𝑖=1 𝐼𝜏(Θ𝑖) 

 

 ≤ 𝑐 < ∞. 
 

  

Exponential Stability of Discrete Linear Time Varying Systems 

 In this section we will discuss a sufficient and necessary 

condition\of the ES of linear TVS (1) with the help of defined 

function (4).  

Theorem 6 Consider the linear TVS (1) the following statements are 

equivalent.   

1.  The TVS (1) is exponentially stable.  

2.  There exists 𝜏 > 1  and a SB {Θ𝑖}𝑖=1
𝜐  ∋  the defined function is 

bounded i.e, 

 𝐼𝜏(Θ𝑖) < ∞, 𝑖 ∈ {1,2, ⋯ , 𝑛}. 
 

3.  ∃ 𝜏 > 1 ∋ 𝐼𝜏 is bounded for every 𝑦 ∈ 𝑅𝜐.  

  

Proof.  (𝟏) ⟶ (𝟐):  Suppose that the linear TVS (1) is exponential 

stable, i.e, we can find constants 𝑝 ∈ (0,1) and 𝑀𝑝 ∋  

 ||Θ(𝜐, Θ0)|| ≤ 𝑀𝑝𝑝𝜐−𝜍||Θ𝑜||, 

for every 𝑛 ⩾ 𝑚. By using the condition we can write that  

 𝐼𝜏(Θ0) = sup
𝜍⩾0

∑∞
𝜍 𝜏𝜐−𝜍||Θ(𝜐, Θ0)||2 

 

 ≤ sup
𝜍⩾0

∑∞
𝜍 𝑀𝑝

2(𝜏𝑝2)𝜐−𝜍||Θ0||2 

 

 = ∑∞
0 𝑀𝑝

2(𝜏𝑝2)𝜐||Θ𝑜||2 

 

 < ∞. 
(𝟐) ⟶ (𝟑): Consider 𝜏 ⩾ 1 ∋ 𝐼𝜏(𝑦) < ∞. Suppose {Θ𝑖}𝑖=1

𝜐  be a SB of 
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𝑅𝜐, then for every 𝑦 ∈ 𝑆𝜐−1, we can find 𝛽𝑖 ⩾ 0, for ∑𝜐
𝑖=1 𝛽𝑖

2 = 1, ∋  

 𝑦 = ∑𝜐
𝑖=1 𝛽𝑖Θ𝑖. 

Using the property of sub-additivity of 𝐼𝜏(𝑦) and CS inequality in the 

summation form, for any 𝑦 ∈ 𝑆𝜐−1 we get that,  

 𝐼𝜏(𝑦) = √𝐼𝜏(∑𝜐
𝑖=1 𝛽𝑖Θ𝑖) 

 

 ≤ [∑𝜐
𝑖=1 𝛽𝑖√𝐼𝜏Θ𝑖]2 

 

 ≤ ∑𝜐
𝑖=1 𝛽𝑖

2 ∑2
𝑖=1 𝐼𝜏(Θ𝑖) 

 ≤ 𝑐. 
Thus by using homogeneity property we have 𝐼𝜏(𝑦) < 𝑐||𝑦||2, 𝑦 ∈ 𝑅𝜐. 
(𝟑) ⟶ (𝟏):  Let 𝜏 ⩾ 1  ∋  𝐼𝜏(Θ0)  is bounded. By the statement 4  in 

theorem (5) we learn that, ∃ 𝑐 > 0 ∋  

 ℐ(𝜏, Θ0) = 𝑠𝑢𝑝𝜐⩾0 ∑∞
𝜍=0 𝜏𝜐−𝜍||Θ(𝜍, Θ0)||2 ≤ 𝑐.

 (3) 

 This implies that , For any given ∈> 0, then ∃ 𝑙0 > 0 ∋ for all 𝑚 ⩾ 0,  

 ∑𝑙+𝑘
𝜍=𝑙 𝜏𝜐−𝜍||Θ(𝜍, Θ0)||2 < 𝜖,    𝑙 > 𝑙0,

 (4) 

 using the summation of (4) we have that , ∃ 𝑛∗ < 𝑛 ∋ 

 

 ∑𝑙+𝑘
𝜍=1 𝜏𝜐−𝜍||Θ(𝜍, Θ0)||2 = 𝜏𝜐−𝑙||Θ(𝑙, Θ0)||2 + 𝜏𝜐−𝑙−1||Θ(𝑙 +

1, Θ0)||2 + ⋯ 

 +𝜏𝜐−𝑙−𝑘||Θ(𝑙 + 𝑘, Θ0)||2 

 

 = 𝜏𝜐−𝑙[||Θ(𝑙, Θ0)||2 +
1

𝜏
||Θ(𝑙 + 1, Θ0)||2 + ⋯ +

1

𝜏𝑘 ||Θ(𝑙 +

𝑘, Θ0)||2], 
let 𝑛 − 𝑙 = 𝑛∗ ⇒ 𝑙 = 𝑛 − 𝑛∗, thus 

 

 ∑𝑙+𝑘
𝜍=𝑙 𝜏𝜐−𝜍||Θ(𝜍, Θ0)||2 = 𝜏𝜐∗

[1 +
1

𝜏
+ ⋯ +

1

𝜏𝑘]sup||Θ(𝜐∗, Θ0)||2, 

where 𝑛∗ > 𝑙 + 𝑘. 
Taking lim𝑘⟶∞, we get  

 ∑𝑙+𝑘
𝜍=𝑙 𝜏𝜐−𝜍||Θ(𝜍, Θ0)||2 ≤ 𝜏𝜐∗

sup||Θ(𝜐∗, Θ0)||2 < 𝜖.

 (5) 

On the other hand, for all 𝑛 ⩾ 0, 
 

 ||Θ(𝜐, Θ0)||2 = ∑𝜐
𝜍=𝑛∗ Δ(||Θ(𝜍, Θ0)||2) + ||Θ(𝜐  ∗ , Θ0)||2 
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 = ∑𝜐
𝜍=𝑛∗ ||Θ(𝜍 + 1, Θ0)||2 − ∑𝜐

𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 +

||Θ(𝜐  ∗ , Θ0)||2 

 = ∑𝜐
𝜍=𝑛∗ ||𝛽𝜍Θ((𝜍), Θ0)||2 − ∑𝜐

𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 +

||Θ(𝜐  ∗ , Θ0)||2 

 ≤ ∑𝜐
𝜍=𝑛∗ ||𝛽𝜍||2||Θ(𝜍 + 1, Θ0)||2 − ∑𝜐

𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 +

||Θ(𝜐  ∗ , Θ0)||2 

 ≤ (𝑐2 − 1) ∑𝜐
𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 + ||Θ(𝜐  ∗ , Θ0)||2, 

where c is the upper bound of ||𝛽(.)|| 

 ≤ (𝑐2 − 1(𝜐 − 𝑛∗)sup||Θ(𝜐∗, Θ0)||2 + ||Θ(𝜐∗, Θ0)||2 

 ≤ (𝑙(𝑐2 − 1)sup||Θ(𝜐∗, Θ0)||2. 
From equation (5) we get 

 ||Θ(𝜐, Θ0)||2 ≤ ((𝑐2 − 1)𝑙 + 1)𝜏−𝑛∗
𝜖 

 

 ≤ ((𝑐2 − 1)𝑙 + 1)𝜏𝑙−𝑛∗
𝜖 

let 𝑀𝑝 = ((𝑐2 − 1)𝑙 + 1)𝜖, then 

 ||Θ(𝜐, Θ0)||2 ≤ 𝑀𝑝𝜏−(𝜐−𝑙). 

At last we obtained the result that the discrete system (1) is exponentially 

stable.   

Definition 7 The radius of the convergence of ℐ(𝜏, 𝛩0) denoted by 𝜏∗, is:  

 𝜏∗ = sup{𝜏 ⩾
1

ℐ(𝜏,Θ0)
< ∞, ∀  Θ0𝜖𝑍𝜐}.  

Theorem 8 Given the linear TVS (1) with 𝜏∗ then for any 𝑝 > (𝜏∗)−
1

2, ∃ 

a constant 𝑀𝑝 ∋  

 ||Θ(𝜐, Θ0)|| ≤ 𝑀𝑝𝑝𝜐−𝜍||Θ0||, 𝑛 ⩾ 𝑚 ⩾ 0. 

Furthermore  

 𝜏∗ = (𝜏∗)−
1

2. 
Proof. Suppose that the linear TVS (1) is exponential stable, i.e, we can 

find constants 𝑀𝑝 and 𝑝 ⩾ (𝜏∗)−
1

2 ∋  

 ||Θ(𝜐, Θ0)|| ≤ 𝑀𝑝𝑝𝜐−𝜍||Θ𝑜||, 

for every 𝑛 ⩾ 𝑚. By using the condition we can write that  

 𝐼𝜏(Θ0) = sup
𝜍⩾0

∑∞
𝜍 𝜏𝜐−𝜍||Θ(𝜐, Θ0)||2. 

Here 𝜏∗ = (𝜏∗)−
1

2  

 𝐼𝜏(Θ0) = sup
𝜍⩾0

∑∞
𝜍 𝜏−

1

2
(𝜐−𝜍)||Θ(𝜐, Θ0)||2 

 𝐼𝜏(Θ0) = sup
𝜍⩾0

∑∞
𝜍 𝑀𝑝

2(𝜏−
1

2𝑝2)𝜐−𝜍||Θ0||2 
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 = ∑∞
0 𝑀𝑝

2(𝜏−
1

2𝑝2)𝜐||Θ𝑜||2 

 < ∞. 

Now assume 𝜏∗ = (𝜏∗)−
1

2 ∋ 𝐼𝜏(Θ0) is bounded. Now ∃ 𝑐 > 0 ∋  

 ℐ(𝜏, Θ0) = 𝑠𝑢𝑝𝜐⩾0 ∑∞
𝜍=0 𝜏−

1

2
(𝜐−𝜍)||Θ(𝜍, Θ0)||2 ≤ 𝑐.

 (6) 

This implies that , For any given 𝜖 > 0, then ∃ 𝑙0 > 0 ∋ for all 𝑚 ⩾ 0,  

 ∑𝑙+𝑘
𝜍=𝑙 𝜏−

1

2
(𝜐−𝜍)||Θ(𝜍, Θ0)||2 < 𝜖,   𝑙 > 𝑙0,

 (7) 

using the summation of (7) we have that , ∃ 𝑛∗ < 𝑛 ∋  

 ∑𝑙+𝑘
𝜍=𝑙 𝜏−

1

2
(𝜐−𝜍)||Θ(𝜍, Θ0)||2 = 𝜏−

1

2
(𝜐−𝑙)||Θ(𝑙, Θ0)||2 +

𝜏−
1

2
(𝜐−𝑙−1)||Θ(𝑙 + 1, Θ0)||2 + ⋯ 

 +𝜏−
1

2
(𝜐−𝑙−𝑘)||Θ(𝑙 + 𝑘, Θ0)||2 

 

 = 𝜏−
1

2
(𝜐−𝑙)[||Θ(𝑙, Θ0)||2 + 𝜏

1

2||Θ(𝑙 + 1, Θ0)||2 + ⋯ + 𝜏
𝑘

2||Θ(𝑙 +
𝑘, Θ0)||2], 

let −
1

2
(𝜐 − 𝑙) = 𝑛∗ ⇒ 𝑙 − 𝑛 = 2𝑛∗, thus  

 ∑𝑙+𝑘
𝜍=𝑙 𝜏−

1

2
(𝜐−𝜍)||Θ(𝜍, Θ0)||2 = 𝜏𝜐∗

[1 + 𝜏
1

2 + 𝜏 + ⋯ +

𝜏
𝑘

2]sup||Θ(𝜐∗, Θ0)||2, 𝑤ℎ𝑒𝑟𝑒  𝑛∗ > 𝑙 + 𝑘. 
Taking lim𝑘⟶∞, we get  

 ∑𝑙+𝑘
𝜍=𝑙 𝜏−

1

2
(𝜐−𝜍)||Θ(𝜍, Θ0)||2 ≤ 𝜏𝜐∗

sup||Θ(𝜐∗, Θ0)||2 < 𝜖.

 (8) 

On the other hand, for all 𝑛 ⩾ 0, 
 

 ||Θ(𝜐, Θ0)||2 = ∑𝜐
𝜍=𝑛∗ Δ(||Θ(𝜍, Θ0)||2) + ||Θ(𝜐  ∗ , Θ0)||2, 

apply Δ operator  

 = ∑𝜐
𝜍=𝑛∗ ||Θ(𝜍 + 1, Θ0)||2 − ∑𝜐

𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 +

||Θ(𝜐  ∗ , Θ0)||2, 

by the equation (1) take system matrix 
𝛽(𝜐)

𝑟
  

 = ∑𝜐
𝜍=𝑛∗ ||

𝛽(𝜐)

𝑟
Θ((𝜍), Θ0)||2 − ∑𝜐

𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 +

||Θ(𝜐  ∗ , Θ0)||2 

 ≤ ∑𝜐
𝜍=𝑛∗ ||

𝛽(𝜐)

𝑟
||2||Θ(𝜍 + 1, Θ0)||2 − ∑𝜐

𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 +

||Θ(𝜐  ∗ , Θ0)||2 
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 ≤ (𝑐2 − 1) ∑𝜐
𝜍=𝑛∗ ||Θ(𝜍, Θ0)||2 + ||Θ(𝜐  ∗ , Θ0)||2, 

where c is the upper bound of ||
𝛽(𝜐)

𝑟
|| 

 ≤ (𝑐2 − 1(2𝑛∗ − 𝑛)sup||Θ(𝜐∗, Θ0)||2 + ||Θ(𝜐∗, Θ0)||2 

 

 ≤ (𝑙(𝑐2 − 1) + 1)sup||Θ(𝜐∗, Θ0)||2. 
From equation (8) we get 

 ||Θ(𝜐, Θ0)||2 ≤ ((𝑐2 − 1)𝑙 + 1)𝜏−𝑛∗
𝜖 

 ≤ ((𝑐2 − 1)𝑙 + 1)𝜏
1

2
(𝜐−𝑙)𝜖, 

let 𝑀𝑝 = ((𝑐2 − 1)𝑙 + 1)𝜖, then 

 ||Θ(𝜐, Θ0)||2 ≤ 𝑀𝑝𝜏
1

2
(𝜐−𝑙). 

So the system is exponentially stable.   

Definition 9 For each 𝑗 > 0, define  

 𝐼𝑗(𝜏, Θ0) = sup ∑𝑗
𝜍=0 𝜏𝜐−𝜍||Θ(𝜍, Θ0)||2. 

 By the same process, we can prove that  

Proposition 10 Consider the Linear TVS (1), then 

  

1.  For 𝜏 > 0, ℐ(. , Θ0) is unbounded ∀  Θ0 ∈ 𝑍𝜍,  then 𝐼𝑗(𝜏, Θ0) will 

also be unbounded by the increasing of 𝑗. 

 

2.  For 𝜏 > 0, ℐ(. , Θ0) is bounded ∀ Θ0 ∈ 𝑍𝜍, then  

 𝑙𝑖𝑚𝑗⟶∞𝐼𝑗(𝜏, Θ0) = ℐ(𝜏, Θ0). 

Proof.  1.  Assume that ∃ Θ0𝜖𝑍𝜐, ℐ(𝜏, Θ0) is bounded, but 𝐼𝑗(𝜏, Θ0) is 

bounded in 𝑗𝜖𝑍+, i.e, ∃ 𝑐 > 0 ∋ for all Θ0𝜖𝑆𝜐−1, 𝐼𝑗(𝜏, Θ0) ≤ 𝑐, for all 

𝑗 ⩾ 0. This implies that, for all 𝑛𝜖[0, 𝑗] and Θ0𝜖𝑆𝜐−1,  

 ∑𝑗+𝑘
𝜍=𝑗 𝜏𝜐−𝜍||Θ(𝜍, Θ0)||2 ≤ 𝑐,   𝑗 > 𝑗0. 

By the similar deduction with the proof for (3) ⟶ (1) in theorem (1) we 

learn that , ∃ constant 𝑀𝑝 > 0 ∋  

 ||Θ(𝜍, Θ0)|| < 𝑀𝑝𝜏−
1

2
(𝜐−𝑙), 𝑛 > 𝑙. 

From lemma (3) the above condition implies that 𝜏−
1

2 > (𝜏∗)−
1

2, which 

further yields 𝜏 < 𝜏∗.  However, this is in contradiction with the 

assumption that 𝐼𝜏(Θ0) is unbounded.  

    2.  For 𝜏 < 𝜏∗, let 𝜏𝐴 = (𝜏 < 𝜏∗)/2, then we have  

 𝐼𝜏𝐴(Θ0) < ∞, 𝑌0𝜖𝑍𝜐. 
It can be learn from theorem 2, there exist constant 𝑀 > 0 ∋  

  ||Θ(𝜍, Θ0)|| < 𝑀𝜏𝐴

−1

2(𝜐−𝑙), 𝑛 > 𝑗. 

With the help of basic inequality we have  
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 ||𝐼𝜏
𝑗

− 𝐼𝜏1(Θ0)|| ≤ || ∑∞
𝜍=𝑗 𝜏𝜍||Θ(𝜍, Θ0)||2|| 

 

 ≤ 𝑀2 ∑∞
𝜍=𝑗 𝜏𝜍𝜏𝐴

−(𝜍−𝑙)
 

 

 ≤ 𝑀2 ∑∞
𝜍=𝑗 (

𝜏

𝜏𝐴
−𝑙)

𝜍. 

Note that 0 < 𝜏 < 𝜏𝐴, then letting 𝑗 converge to infinity we have for all 

𝑌0𝜖𝑍𝜐,  

 𝑙𝑖𝑚𝑙⟶∞𝐼𝜏
𝑗
(Θ0) = 𝐼𝜏(Θ0). 

Conclusion 

       In this paper, we studied the ES of discrete linear TVS using SF.By 

showing the properties of SF and applying the lemma to derive the basic 

properties for the ES of discrete linear TVS. Furthermore, the exponential 

decay rate of the system can be obtained by computing the radii of 

convergence of SF. In future, our aim is to extend these results to the 

Hyers–Ulam stability of discrete linear TVS using SF.  

 

Competing Interests 

The authors declare that they have no competing interests.  

 

References 

Amato, F., Celentano, G., & Garofalo, F. (1993). New sufficient 

conditions for the stability of slowly varying linear systems,  

IEEE Trans. Automatic Control, 38(9), 1409–1411. 

Berger, T. & Ilchmann, A. (2013). On stability of time-varying linear 

differential-algebraic equations,  International Journal of 

control, 86(6), 1060–1076. 

Coppel, W. A. (1978).  Dichotomies in Stability Theory, Lecture Notes in 

Mathematics emph 629         Springer, Berlin. 

Desoer, C. A. (1970). Slowly varying discrete system 𝑥(𝑖+1) = 𝐴(𝑖)𝑥(𝑖),  

IEEE, Electronic Letters, 6(11), 339–340. 

Forbes, J. R. & Damaren, C. J. (2011).  Linear time-varying passivity-

based attitude control employing magnetic and mechanical 

actuation,  Journal of Guidance, Control, and Dynamics, 

34(5),1363–1372. 

Hill, A. T. & Ilchmann, A. (2011).  Exponential stability of time-varying 

linear systems,  IMA Journal of Numerical Analysis, 31, 865–

885. 

Mullhaupt, P., Buccieri. D. & Bonvin, D. (2007).  A numerical suffciency 

test for the asymptotic stability of linear time-varying systems,  

Automatica, 43(4), 631–638. 



 

On the Stability Analysis of Discrete Linear TVSs                           Arif, Iftikhar 

The Sciencetech                          26           Volume 2, Issue 1, Jan-Mar 2021 

 

Okano, R., Kida, T. & Nagashio, T. (2006).  Asymptotic stability of 

second-order linear time-varying systems,  Journal of Guidance, 

Control, and Dynamics, 29(6), 1472–1476. 

Rugh, W. J. (1996).  Linear System Theory, 2nd edn., Prentice Hall, New 

York. 

Trentelman, H. L., Stoorvogel, A. A. & Hautus, M. (2002).  Control 

theory for linear systems, Springer. 

Wu, M. Y. (1984). On stability of linear time-varying systems,  

International Journal of Systems Sciences, 15(2), 137–150. 

Yao, Y., Liu, K., Sun, D., Balakrishnan, V. & Guo, J. (2012). An integral 

function approach to the exponential stability of linear time 

varying systems,  International Journal of Control, Automation, 

and Systems, 10(6), 1096–1101. 

Zada, A., Li, T., Arif, M. & Lassoued, D. (2016).  Criteria for the 

exponential stability of linear evolution difference equations,  

IMA Journal of Mathematical Control and Information, 1–10. 

Zada, A., Zada, B., Cao, J. & Li, T. (2017).  Uniform exponential stability 

of periodic discrete switched linear system,  Journal of the 

Franklin Institute, 2017(354), 6247–6257. 

Zada, A. & Ali, S. (2018). Stability analysis of periodic & almost–periodic 

discrete switched linear system,  Matrix Science Mathematic, 1–

6. 


