
Reduction of Defect Generation in Software Projects using LSS

Approach

Syed Mahiuddin*, Jamal Uddin*, Asim Zeb†

Abstract
A defected software usually couldn’t perform its intended activities and

client will not accept and pay for the product. Also, they can ask penalties.

To make acceptable to clients, rework will require and more rework effort

will make it costlier, profit margin will reduce. Less rework, more profit and

improved client satisfaction are correlated and works in integrated form are

directly proportional to each other. Lean and Six Sigma are used as process

improvement tools in the software organizations. Lean Sigma is

combination of Lean and Six Sigma process performance improvement

frameworks and is more powerful compared to the individual is approaches.

The delivery quality is measured regularly and defects reported was

observed. High defect rate was observed during addition of new features or
customization of the existing features of the product. This impacted

deliverable quality and customer satisfaction both. To address these issues a

process improvement initiative was initiated in the development phase with

LSS as a tool and Define Measure Analysis Improvement Control (DMAIC)

framework as the approach. As an initial step baseline performance was

measured and it was 2.8 Sigma (Zst). The detailed data was used for

identifying roots causes and formulating action items. Then, detailed defect

data was collected and analyzed. Finally, performance level was measured

after the initiative and it was 3.3 Sigma (Zlt). Accordingly, the defect

generation rate was reduced by 50% which was previously observed as

40%. Therefore, the proposed approach helps in identifying defects, closing

and preventing defect generation in early phase of software development.

 Keywords: Lean, Six Sigma, Software defect, Software quality

Introduction
Most of our activities are now technology driven and

computer programs are integral part of it. Starting from the microchip

to any high-volume tasks are not operated by software driven way.

Hence, software plays a pivotal role in the progress of our modern
society. In the last few years there has been tremendous progress in

the field of information technology and computing system (Berisha-

Shaqiri 2014). Today Software programs are part of the production
systems and helping in improving efficiency and reducing defects

(Miles 2001). Also, software and internet is playing a key role in

globalization (Douglas 2002). With the advancement of technology,

*Department of Physical & Numerical Sciences, Qurtuba university of science & Information

Technology Peshawar, Pakistan. syedmahiuddin620@gmail.com
†
Abbottabad University of Science & Technology, Abbottabad, Pakistan

mailto:syedmahiuddin620@gmail.com

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 50 Volume 1, Issue 4, Oct-Dec 2020

the software development process has also been changed over the last

decades. Now most of the software development follows Agile model
rather than the traditional waterfall model (Hoda, Salleh et al. 2017),

(Takagi and Daisuke 2007).

However, with the advancement of technology, availability

of skill and competency the software business also facing
competency challenges from developing countries and the startups

(Wang and King 2000). To be in the business they need to be

competitive in the market keeping the delivery quality high to be the
first preference of the customers by improving their delivery quality

(Mishra and Alok 2009). In order to achieve the same, they are now

focusing to reduce the defects in the deliverables. It will improve the
product quality and at the same time it will reduce rework

percentages which is currently around 30% (Summers 2013). The

reduction of the rework will reduce the cost of production and make

the offering more competitive. This clearly signifies that there is a
room for improvement in deliverable quality of software. The

software quality can be improved by either improving the

development process or by doing some value addition in the overall
development process (Conboy and Morgan 2011).

Motorola was trying to improve the quality of their products

in early 90’s developed one quality improvement framework
(Breyfogle and Forrest 1999). This framework was data driven (i.e.

using historical data for solving the problems) and based on the

principals of Statistical Quality Control (SQC). This framework

named as Six Sigma was applied to business processes and it gave
great result. Later, different companies started following this

framework and most of them were benefitted. Now Six Sigma is used

across the industries for improving performance by making the
process more effective and robust. The limitations of Six Sigma

include difficult implementation, complications, may get costly in the

long run. While limitations of Lean include inability to effectively

calculate projected (Return on Investment) ROI. Lean Methodologies
do not account for the whole system and dynamic behavior.

The integration of LSS has ample evidence of successes in

industry as well as in educational institutions in different parts of the
world. LSS (LSS) procedure is implemented in Indian higher

education system and the results were expeditious (Mukhopadhyay

2017). LSS is an effective methodology to maximize stakeholders’
value by improving quality, efficiency, customer satisfaction and

optimizing costs. The LSS implementation had a great positive

impact on the bottom-line performance i.e. the financial performance

of the organization (Lee, Tai et al. 2013).
Considering these aspects, it was thought to use Lean

principals along with the Six Sigma principals in case of application

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 51 Volume 1, Issue 4, Oct-Dec 2020

software development. Software companies engaged in software

development and maintenance are facing defect lickage problem to
the client. The events started complaining about quality of

deliverables. They then thought to improve client satisfaction by

improving deliverable quality through defect reduction. An

improvement initiative will be initiated following LSS methodology
Define Measure Analysis Improvement Control (DMAIC)

framework was selected for this purpose. and data was collected after

four months of implementation.
The aim of this research is to use integrated framework of

Six Sigma and Lean principals to reduce defect generation and

improve the quality of deliverables for software projects. It was also
reported that 40% defect reduction was possible using Six Sigma

principals (Roy and Samaddar 2015). Hence, the present research

aims integrate Lean with Six Sigma to reduce defect generation rate

further, at least 50%.
The rest of the paper is organized as follows: The previous

work related to this topic is summarized in Section II. The research

methodology used in this study is described in Section III.
Experimental design of this approach is described in Section IV. The

results are presented in section V and the detailed analysis of this

approach is presented in section VI. The Conclusion of the paper
with future directions are explained in section VII and section VIII.

Background Study

LSS can be successfully used to improve such processes with

some limitations. The limitations include issue with data handling,
exception handling, dealing with missing value and analysis of

unstructured data. Though we are talking about the applicability of

LSS across the industry, practically it is not (Antony 2014). In the
education sector the readiness factors are awareness, willingness to

improve, cost benefits, regulations etc. Presence of these factors

helps in implementation of LSS in higher education (Galli 2018).
LSS is mainly used for reducing waste and cost to improve

bottom-line performance. However, there are chances of introduction

of new risks in the newly developed process which can have some

adverse impact in the long run (Aomar 2017). Hence, implementation
of organization wide LSS based on pilot outcome can introduced

risks related to resource, data quality and project selection.

Various software improvement methodologies like TRIZ,
Agile, Lean and Six Sigma were studied. TRIZ is framework for

specific process improvement (Grace, Slocum et al. 2001). This

framework has main 40 principals with specific solution approaches.
If the problem falls within the domain, specific solution is there;

otherwise no solution is available. On the other hand, Agile brought a

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 52 Volume 1, Issue 4, Oct-Dec 2020

new flavor in the traditional software development process by

emphasizing on workable delivery.
Like other product defect is a concern for software also.

There are several process improvement frameworks available for

improving software processes. Software Process Improvement and

Capability determination (SPICE) and Capability Maturity Model
Integration (CMMI), International Standards Organization (ISO) are

couple of widely used models (Shelpar 2013). These models have

their own pros and cons, hence should be carefully selected for
application.

A simple PDCA (Plan–Do–Study–Act Cycle) approach on historical

data can reduce the defect generation in software application (Anees
2017). This is very simple process and lack of integrated data driven

approach. This approach can bring defect level to a certain extent but

defect reduction beyond a certain level is not possible.

IT service industry uses Control Objectives for Information
and Related Technologies (COBIT), Information Technology

Infrastructure Library (ITIL) methodology for managing the service

operations i.e. IT governance and services respectively (Herrera
2019). Meta model based on the continuous improvement approach

of IT services integrated with Lean methodology shown better result

than the traditional frameworks. Still this concept is very new and
need more application before generalization.

Defect prediction models are effective in predicting software

defect. One approach to predict software defect is Probabilistic-ABC

and feature selection (Kumar 2017). This can predict the software
defects with large number of feature sets. This was used in a NASA

data set and prediction was highly satisfactory. However, the positive

outcome of this model can be used further to develop a dynamic
prediction model.

Increase of interoperability of software increased demand for

software defect prediction to reduce operational hazards (Changzhen

2019). This can be achieved through proper usage of dimensionality
reduction process. Local Tangent Space Alignment (LTSA)

algorithm found to be helpful for this purpose and its prediction

accuracy is 1-4% higher compared to Support Vector Machine
(SVM) and Locally Linear Embedding and Support Vector Machine

(LLE-SVM). Also, deep learning-based algorithm Deep Belief

Network to learn semantic based structured code representation
automatically learns and successfully predict the trend of software

defect generation on average by 14.7% in precision, 11.5% in recall,

and 14.2% in F1 better comparing with traditional features (Wang

and Taiyue 2016).
Software defect prediction can also be achieved through

Principle Component Analysis (PCA) incorporating maximum-

https://en.wikipedia.org/wiki/PDCA

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 53 Volume 1, Issue 4, Oct-Dec 2020

likelihood estimation for error reduction and neural network-based

classification techniques for prediction (Jayanthi and Florence 2019).
This was tested in NASA software dataset with MATLAB simulation

tool. The outcome was quite good and better than other techniques in

some cases.

In a review on application of Lean, Six Sigma and Agile
metrology, it was concluded that these are effective and highly used

in software organizations (Badwe and Erkan 2018). However, usage

is not so much compared to manufacturing or service sectors. While
other sectors are enjoying the benefits of these frameworks, software

sector is lagging behind. It is recommended for the software

organizations to uses Six Sigma as a process improvement
framework and improves their overall business results, more the use

better is the performance. In recent time the volume of data is very

high with different types of data (Gunasekaran 2019).

The comparison of existing and previous work of LSS in the
field of software development is presented in Table 1.

Table1: Comparative analysis of existing work of LSS in Software Development

LSS (Gijo and

Antony 2019)

(Huang

2016)

Current

Research

Project

Completion

Duration

6 Months 3 Months 3 Months

Process

Improvement

25% 47% 50%

Data Points Before= 690
After=460

Before = 320
After= 280

Before= 1410
After=971

Defect

Reduction

No No Yes

Projects

Considered

1 1 3

Preliminaries Limited Limited Detail

Analysis of LSS Limited Limited Detail

Lean Six Sigma (LSS) Approach
Six Sigma well-defined methodology Six Sigma is a data

driven methodology; data accuracy is highly important for Six

Sigma. Six Sigma is all about improving business result through

process improvement. Lean is the set of "tools" that assist in the
identification and steady elimination of waste. As waste is eliminated

quality improves while production time and cost are reduced. Lean

Six Sigma is a method that relies on a collaborative team effort to
improve performance by systematically removing waste and reducing

variation.

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 54 Volume 1, Issue 4, Oct-Dec 2020

An integrated approach of Lean and Six Sigma (LSS) is used to

improve the software development process performance by reducing
the defect rate. The proposed research process steps are presented in

Figure 1 and are described as below;

Step 1: Identification of research problem – In this step based on the

literature review and other available information identification and
finalization of research problem is done.

Step 2: Initial data collection – In this step initial data collection is

done to find out the performance status before application of LSS.
Step 3: Data Processing – This is the third step of the overall process.

The objective of this step is to remove the outliers and make the data

ready for initial analysis purpose.
Step 4: Data Analysis - This is the next step after data processing. In

this step data analysis is done to understand the (a) Baseline

Performance (b) Root Causes of the Low Performance

Step 5: Action Item Identification – This step will be followed by the
Root Cause Analysis. The objective of this step is identification of

action items to address the negative impacts which are causing low

performance.
Step 6: Action Item Implementation - Once action items are identified

implantation plan will also be developed. These action items will be

implemented, which are practically feasible to implement.
Step 7: Data Collection (after implementation) - After running the

new process for some time, data will be collected, and processed for

removal of outliers.

Step 8: Performance Measurement (after) – In this step, after the data
processing, process performance will be calculated to check if these

is improvement in performance after implementation of LSS.

Step 9: Process Standardization_ Once performance analysis is done
and satisfactory result is observed, the new process will be

standardized. All process manuals, process aids and standard

operating procedures will be updated.

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 55 Volume 1, Issue 4, Oct-Dec 2020

 Figure 1: Proposed Research Process

Project charter
(i) All projects are related to capital market business domain.

(ii) Techno log used_ Java.

(iii) Database_ orade 11 G.
(iv) Front End _HTHL 5.

(v) Effort _ 30 man months to 60 man months.

(vi) Team structure_ Project Manager, Business Analyst,

Developer testers

Figure 2: The Research Framework

LSS performance improvement initiative followed DMAIC

framework. Testing finding are captured in defect tracking tool

JIRA. Defect records downloaded from this tool of companies like

(IBM, HCL and Tata Consultancy Services). The data set containing
parameters like Test case ID, Test case description, expected result,

Actual result, Test case status (pass/ fail), Finding category

(Bug/New feature/Enhancement), Finding Type
(Blocker/Major/Minor), Root Cause and Finding status (Open/

Close/Ignore)

The records are tracked till closure and kept in the system for

future references. Based on the approval from the senior
management, required data dump was provided internally for the use

for three customization and deployment projects for three different

companies. In the defect data there are different variable. The
variables which are required for the performance improvement

projects includes; Defect Type – Bug / Improvement, Defect

Category - Technical Error/ GUI Issue, Defect Status – Fixed /
Ignore and Defect Root Cause- Incomplete requirement/ Domain

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 56 Volume 1, Issue 4, Oct-Dec 2020

Knowledge/ Logic Implementation/ Impact of Bug Fix. In this paper,

attempt was made to include more projects to make the outcome
more generic hence more three projects were added.

Results and Discussion

LSS initiative started for three projects having requirements
at three different companies named IBM, HCL and Tata Consultancy

Services. Based on the client requirements, software is customized to

make it fit for use in different companies. There are lots of
requirements in a customization project. The requirements are of two

types; new development and change in the existing functionality.

Systematic approach is essential for improving performance. This
initiative was driven using DMAIC framework and some Lean tools

have been used. The Six Sigma concepts used in this process are;

Process Diagram, Sigma Scale and tools like brain storming, data

collection, pareto chart, hypothesis testing.
The Lean concepts those used in this initiative are; Mistake proofing

– introduction of impact analysis in audit checklist to make it

mandatory, VA/NVA Analysis- Based on this analysis, many steps in
the review process was removed to ensure more time availability for

the developer. Two phase testing is done; functional testing for

validating the working of requirements and automation testing as the
regression testing for overall functionalities. In all projects test cases

and test execution records are maintained in JIRA. To validate the

requirements or the overall functionalities, test cases are prepared.

Single test cases are written to test single functionality.

Defect Analysis before applying LSS

The defect distribution of two different type of activities are
summarized in Table 2.

Table 2: Summary of Defect (Before applying LSS)

By the help of table, we can calculate and judge the total

data. The number of cases is 478 in project A and in project B, the

number of test cases were less then project A. In project C it is higher
among all the projects because it is 593 and hence the total number of

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 57 Volume 1, Issue 4, Oct-Dec 2020

cases were recorded 1410. But the defect reported by tester were 155

in total and the higher defect reported by tester were in project A that
is 67. Defect ignored was recorded equally in project A and in project

C. It is same in number but project B defect ignored were less and

total defect ignored were 17. Project A fixed defect is higher it is 61

and in project B it is 37 but project C defect fixed is higher than
project B it is 40 and total is 138. Therefore, effective defect is same

like defect fixed it is also 138 in total. Moreover, defect summary

based on the origin is given in the Table 3.

Table 3: Defect Summary Origin (Before applying LSS)

 It was observed that in total of 138 defects in which 89
defects (64.49 %) contributed by customization projects and 49

defects (35.51%) contributed by new development. It can also be

seen that new development has less defects as compared to
customization.

Process Performance Level (Baseline)

In Six Sigma term, process performance levels are:

Long term (ZLT) and Short Tern (ZST) = 1.5 + ZLT

In the present initiative, defect count 138, total test cases i.e. the

opportunity is 1410 and opportunities per unit is 1.

Defect Rate = (Total Defect/ Total Test Cases) = 0.1
Defect per Million Opportunities = (Defect count *1000000/ Total

Test Cases) = 97872

Using the formula,

Sigma Level = ABS (NORMSINV(DPMO/1,000,000))) we get,

Long term Short term
Identified action items were implemented to close the

defects. A detailed analysis of the defect cause is summarized in

Table 4 and corresponding Pareto Chart is given in Figure 3. The

records and defect causes are measured and summarized in Table 4.
It was observed that, out of total 138 defect, 33 defects caused due to

lack of proper domain knowledge of the development team members,

in 21 cases requirement clarity was missing and lead to defect
generation. One of the main issues in software development is the

tight schedule. In present case 26 defects generated due to tight

timeline.

Table 4: Defect Summary by Causes

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 58 Volume 1, Issue 4, Oct-Dec 2020

 Figure 3: Pareto Analysis of Defects

To identify major causes of defects of Pareto analysis was

conducted. The objective was to identify 20% of causes which are
responsible for 80% defects. The Pareto analysis reveals that top

causes contributing 80% defects are; Impact Analysis (34.8%),

Domain Knowledge (24%) and Crunch Timeline (19%). Now LSS is

used to identify the exact causes of defect generation and probable
action items to address the same. The brainstorming sessions and

multiple focus group discussions conducted with the project team

members. The discussion summary is given in Table 5.

Defect Analysis after applying LSS

A new initiative started to improve the level of domain
knowledge of the employees. Initially small sessions within the

project teams started for the different parts of the products. Also,

development of e-learning courses is in progress to make this domain

knowledge training hassle free and easily accessible for all the
employees. After four months of implementation of these action

items defect data again collected from another three projects. The

defect data are summarized in Table 6. It presents the project defect
after the implementation of the action items as identified in the

analysis phase. Here, total 971 test cases were available (Project A=

356, Project B= 329 and Project C= 286). Total 52 defects were

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 59 Volume 1, Issue 4, Oct-Dec 2020

logged by the testers (Project A= 19, Project B= 21 and Project C=

12) and 8 defects were ignored by the project teams (Project A= 3,
Project B= 3 and Project C= 2). Hence, total effective defects after

the LSS Project was 44 (Project A= 16, Project B= 18 and Project C=

10).

Table 5: Defect Root Causes

Defect

Cause

Sub Causes Action item to

address the cause

Remark

Impact

Analysis

Impact analysis plays an

important role in

identifying the impact of

change in other software

functionalities. It was

observed it is not done

always, hence impact

remain unknown to the

developers and sometime

cause new defect

Make impact analysis

mandatory for the

customization

requirements to

ensure the impact of

change in rest of the

functions.

Change in

process

definition is

required to

ensure the

same

Domain

Knowledge

This domain is niche and it

was observed the

knowledge is limited within

a group of SMEs.

Inadequate knowledge

sometimes leads to defect

generation.

Prosper knowledge

sharing to be done to

improve domain

knowledge of the

workmen.

Change in

training

manual is

required to

make

Domain

training

mandatory

for all the

employees.

Depth of the

training will

depend on

the role of

the

employee.

Crunch

Timeline

It was observed that, there

was excessive review

before the delivery. Due to

which developers was

getting less time than the

required time, which

hampering the quality of

deliverable.

The numbers of

review to be reduce

to give more time to

the developers for

their work.

Change in

the review

process is

required to

cater this

requirement

Table 6: Summary of Defect (After applying LSS)

Table 7: Defect Summary Origin (After Applying LSS)

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 60 Volume 1, Issue 4, Oct-Dec 2020

From Table 7, it was seen and observed through different

analytical studies that in total of 44 defects that studied which 20
defects (45.45%) contributed by customization projects and 24

defects (54.55%) contributed by new development. We can see that

new development has less defects as compared to customization.

Total test case= 971, total defects =44 and defect opportunities per
unit =1

Defect Rate = Total Defects/ Total Test Cases = 0.05

Defect per Million Opportunities = (Defect count *1000000/ Total
Test Cases) = 45314

Using the formula, Sigma Level = ABS

(NORMSINV(DPMO/1,000,000))) we get,
Long term (ZLT) = 1.7 and Short Tern (ZST) = 3.2

The correct output rate before Two tailed proportion test was

conducted to ensure if correct output is higher after the

implementation of LSS. The outcome of the test at 95% confidence
level suggests rejection of the null hypothesis. Therefore, there is

enough evidence to applying LSS proportion p1 is less Correct output

rate after applying LSS than p2, at the 0.05 significance level. Which
signifies that percentage of correct output is higher after

implementation of LSS.

Improvement of Defect Rate = (0.1-0.05) *100/0.1 = 50%
accordingly we achieve the goal (50 %) of the initiative.

Conclusion and Future Work

In the pervious research, only Six Sigma was used but in this
work LSS was used as improvement techniques LSS is more

powerful than Six Sigma, so accuracy improved due to this. Whereas,

in the present research, Lean was used along with Six Sigma for the
same objective of defect reduction in software development. At the

beginning the performance level was Zst (2.8) Sigma. Then LSS

tools and techniques were used to identify the root causes of defects,

Appropriate action were taken to address the problem and
performance level improved to Zst (3.2) Sigma. Also defect

generation rate reduced by 50% which is quite good for quality and

rework point of view. Hence it can be concluded that LSS is more
effective in reduction of software defect generation than Six Sigma.

This LSS study was conducted in financial domain of the software

development. This was critical, sensitive and confidential project. To
improve the performance some process related changes were made to

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 61 Volume 1, Issue 4, Oct-Dec 2020

the existing processes. This LSS project was conducted in the

software development process which is not very common. This
initiative was for customization and deployment of the software. The

projects under the study were development and enhancement in

nature. Also, these projects are very specific to the capital market

domain. Hence, more study is required to generalize the result.

References

Anees, A. (2017). "Software process improvement models and their

comparison." International Journal of Advanced Research in

Computer Science 8(5): 200_213.
Antony, J. (2014). "Readiness factors for the Lean Six Sigma journey

in the higher education sector." International Journal of Productivity

and Performance Management 5(7): 1-12.

Aomar, M. (2017). "Reducing the interruption of power
distribution:A Six Simga application." 2nd International Conference

on knowledge Engineering and applications (ICKEA) IEEE.

Badwe, S. and T. E. Erkan (2018). "A Taxonomy of Lean Six Sigma
and Agile Methodologies used in Software Development."

International Journal of Engineering Research and Technology,

11(7): 725-753.
Berisha-Shaqiri (2014). "Impact of information technology and

internet in businesses." Academic Journal of Business,

Administration, Law and Social Sciences IIPCCL Publishing, 1(1):

1_7.
Breyfogle, F. and T. Forrest (1999). Implementing six sigma part 1.

The Quality Management Forum, ASQ, Summer.

Changzhen, Z. (2019). "Establishing a software defect prediction
model via effective dimension reduction." Information Sciences 477:

399-409.

Conboy, K. and L. Morgan (2011). "Beyond the customer: Opening

the agile systems development process." Information and Software
Technology 53(5): 535-542.

Douglas, K. (2002). "Theorizing Globalization." Sociological Theory

20(3): 285-305.
Galli, B. (2018). "Can project management help improve lean six

sigma?" IEEE Engineering Management Review 46(2): 55-64.

Gijo, E. and J. Antony (2019). "Application of Lean Six Sigma in IT
support services–a case study." The TQM Journal.

Grace, Slocum and Clapp (2001). "A new TRIZ practitioner's

experience for solving an industrial problem using ARIZ 85C." The

TRIZ Journal.

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 62 Volume 1, Issue 4, Oct-Dec 2020

Gunasekaran (2019). "Big data in lean six sigma: a review and

further research directions." International Journal of Production
Research: 1-23.

Herrera, M. (2019). Using metamodeling to represent lean six sigma

for IT service improvement. 2019 IEEE 21st Conference on Business

Informatics (CBI), IEEE.
Hoda, R., N. Salleh, J. Grundy and H. M. Tee (2017). "Systematic

literature reviews in agile software development: A tertiary study."

Information and Software Technology 85(15): 60-70.
Huang (2016). Application of lean six sigma methodology in software

continuous integration. Key Engineering Materials, Trans Tech Publ.

Jayanthi and L. Florence (2019). "Software defect prediction
techniques using metrics based on neural network classifier." Cluster

Computing 22(1): 77-88.

Kumar, R. (2017). A novel probabilistic-ABC based boosting model

for software defect detection. 2017 International Conference on
Innovations in Information, Embedded and Communication Systems

(ICIIECS), IEEE.

Lee, K.-l., C.-T. Tai and G.-J. Sheen (2013). "Using LSS to improve
the efficiency and quality of a refund process in a logistics center."

International Journal of Lean Six Sigma.

Miles, P. (2001). "Globalisation–Economic Growth and
Development and Development Indicators." Planet Papers 4(3):

210_218.

Mishra and Alok (2009). "Software process improvement in SMEs:

A comparative view." Computer Science and Information Systems
6(1): 111-140.

Mukhopadhyay, K. (2017). Application of Lean six sigma in Indian

higher education system. 2017 International Conference on
Innovative Mechanisms for Industry Applications (ICIMIA), IEEE.

Roy, S. and S. Samaddar (2015). "To Reduce Deffect in Software

Development: A Six Sigma Approach." Center for Quality 12(6):

345_352.
Shelpar, M. (2013). "“Software Process Improvement Model”."

International Journal of Advanced Research in Computer Science

and Software Engineering, Vol. 3(6): 313-315.
Summers (2013). "Effective Method for Software and System

Integration." Taylor& Francis Group. 12(8): 28_29.

Takagi and Daisuke (2007). "Innovation in software development
process by introducing Toyota Production System." Fujitsu Sci. Tech.

J 43(1): 139-150.

Wang and Taiyue (2016). Automatically learning semantic features

for defect prediction. 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), IEEE.

Reduction of Defect Generation using LSS Mahiuddin et al.

The Sciencetech 63 Volume 1, Issue 4, Oct-Dec 2020

Wang, Y. and G. King (2000). Software engineering processes:

principles and applications, CRC press.

