Common Fixed-Point Results for Two Weakly Compatible Expansive

Self-Mappings in Cone B-Metric Spaces

Arjamand Bano*, Muhammad Arif†, Saima Naheed‡, Musa Kaleem§

Abstract

In this paper we establish common fixed-point results for two weakly compatible self-mappings in cone b-metric spaces using Expansive mappings. Our results extend, unify and complement various known results existing in the literature.

Keywords: cone b-metric spaces, common fixed point, expansive self-mappings and weakly compatible mappings

1. Introduction and Preliminaries

Fixed point theory plays a basic role in many branches of mathematics. There are many works about the fixed point of contractive maps (see [1, 2, 4, 15 and 17]). In 1922, Polish Mathematician Banach [4] proved a very important result regarding a contraction mapping, known as the Banach contraction principle. The concept of b-metric space appeared in some works, such as I.A. Bakhtin [6], S. Czerwik [9], etc. Several papers deal with the fixed-point theory for single valued and multivalued operators in b-metric spaces (see [3,5,6, and 9]). In [6], Bakhtin introduced b-metric spaces as a generalization of metric spaces. He proved the contraction mapping principle in b-metric spaces that generalizes the famous Banach contraction principle in metric spaces. In [11] Huang and Zhang introduced cone metric spaces as a generalization of metric spaces. Later on, Kadelburg et.al. [16], obtained a few similar results without normality of the underlying cone but only in the case of quasi-contractive constant

$$K \in \left[0, \frac{1}{s}\right)$$
.

In [10], Hussain and Shah introduced cone b-metric spaces as a generalization of b-metric spaces and cone metric spaces. They established some topological properties in such spaces and improved some recent

^{*}Department of Mathematics, Gomal University, Dera Ismail Khan, Pakistan

[†] Department of Mathematics, Gomal University, Dera Ismail Khan, Pakistan

[‡] Department of Mathematics, Gomal University, Dera Ismail Khan, Pakistan

[§] Head of Department of chemical and Life Sciences, Qurtuba University of Science and Information Technology, Dera Ismail Khan, Pakistan

results about KKM mappings in the setting of cone b-metric spaces. The works about cone b-metric spaces and fixed-point theorems for expansive mappings are given by many authors (see [7,8,10,12,13,15 and 20]). In this paper, we present common fixed-point theorems for two weakly compatible expansive self-mappings in cone b-metric spaces. The results greatly generalize and improve the work of [19].

The following definitions and results will be needed in sequel.

Definition 1.1 [13]. Let E be a real Banach space and P be a subset of E. The subset P is called a cone if and only if:

- i. *P* is nonempty, closed and $P \neq \{0\}$
- ii. $a,b \in R$, $a,b \ge 0$ and $x,y \in P \Rightarrow ax + by \in P$.
- iii. $P \cap (-P) = \{0\}$

On this basis, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We shall write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in int(P)$. Write $\|.\|$ as the norm on E. The cone P is called normal if there is a number K > 0 such that $0 \leq x \leq y$ implies $\|x\| \leq k \|y\|$, for all $x, y \in E$.

The least positive number K satisfying the above condition is called the normal constant of P.

Definition 1.2 [12]. Let X be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow E$ satisfies:

- (i) $0 \le d(x, y)$ for all $x, y \in X$ with $x \ne y$ and d(x, y) = 0 if and only if x = y
 - (ii) d(x, y) = d(y, x) for all $x, y \in X$
 - (iii) $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$.

Then d is called a cone metric on X and (X,d) is called a cone metric space.

Definition 1.3 [11]. Let X be a nonempty set and $s \ge 1$ be a given real number. A mapping $d: X \times X \to E$ is said to be cone b-metric if and only if, for all $x, y, z \in X$, the following conditions are satisfied:

(i)
$$0 \le d(x, y)$$
 with $x \ne y$ and $d(x, y) = 0$ if and only if $x = y$

(ii)
$$d(x,y) = d(y,x)$$

(iii)
$$d(x,y) \le s \lceil d(x,z) + d(z,y) \rceil$$

The pair (X, d) is called a cone b-metric space.

Definition 1.4[18]. The mappings $f, g: X \to X$ are weakly compatible if for every $x \in X$, fgx = gfx holds whenever fx = gx

Definition 1.5 [2]. Let f and g be self-maps on a set X.

If w = fx = gx for some $x \in X$, then x is called a coincidence point of f and g, and w is called a point of coincidence of f and g.

Remarks 1.6. The class of cone b-metric spaces is larger than the class of cone metric spaces. Since any cone metric space must be a cone b-metric space. Therefore, it is obvious that cone b-metric spaces generalize b-metric spaces and cone metric spaces.

Example 1.7[31]. Let X = [1, 2, 3, 4],

$$E = R^2, P = \{(x, y) \in E : x \ge 0, y \ge 0\}.$$

Defined $d: X \times X \to E$ by

$$d(x,y) = \begin{cases} \left(Ix - yI^{-1}, Ix - yI^{-1} \right), & \text{if } x \neq y \\ 0, & \text{if } x = y \end{cases}$$

Then (X,d) is a cone b-metric spaces with the coefficient $s = \frac{5}{6}$. But it

is not a cone metric space since the triangle inequality is not satisfied. Indeed

$$d(1,2) > d(1,4) + d(4,2), d(3,4) > d(3,1) + d(1,4)$$

Definition 1.8[10]. Let (X, d) be a cone b-metric space, $x \in X$ and $\{x_n\}$ a sequence in X then:

i. $\{x_n\}$ converges to x whenever, for every $c \in E$ with 0 << c, there is a natural number N such that $d(x_n, x) \square$ c for all $n \ge N$ we denote this by $\lim x_n = x$ or $x_n \to x (as \ n \to \infty)$.

- ii. $\{x_n\}$ is a Cauchy sequence whenever for every $c \in E$ with 0 << c there is a natural number N such that $d(x_n, x_m) << c$ for all $n, m \ge N$.
- iii. (X,d) is a complete cone b-metric space if every Cauchy sequence is convergent?

The following lemmas are often used (in particular when dealing with cone metric in which the cone need not be normal).

Lemma1.10[10]. Let (X,d) be a cone b-metric space the following properties are often used while dealing with cone b-metric spaces in which the cone is not necessarily normal.

- a) If $u \ll v$ and $v \ll w$, then $u \ll w$
- b) If $0 \le u \ll c$ for each $c \in int(P)$, then u = 0
- c) If $a \le b + c$ for each $c \in \text{int } (P)$, then $a \le b$

Lemma1.11 [2]. Let f and g be weakly compatible self-maps of a set X. If f and g have a unique point of coincidence w = fx = gx then w is the unique common fixed point of f and g.

Theorem1.2[19].Let (X,d) be a cone b-metric spaces with the coefficient $S \ge 1$ and let $a_i \ge 0$ (i = 1,2,3,4,5) be constant with $2Sa_1 + (S+1)(a_2 + a_3) + (S^2 + S)(a_4 + a_5) < 2$.

Suppose that the mappings f , $g: X \to X$ satisfy the condition for all x , $y \in X$

$$d(fx,fy) \le a_1 d(gx,gy) + a_2 d(gx,fx) + a_3(gy,fy) + a_4 d(gx,fy) + a_5 d(gy,fx)$$

if the range of g contains the range of f and g(x) or f(x) is a complete subspace of X then f and g have a unique point of coincidence in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point in X.

2. Main Results

In this section, we give some common fixed-point results for two weakly compatible expansive self mappings satisfying the contractive condition. In the case of contractive constant $k \in \left[0, \frac{1}{S}\right]$ in cone b-metric spaces without the assumption of normality.

Theorem 2.1. Let (X,d) be a cone b-metric space with co-efficient $S \ge 1$ and suppose $a_i \ge 0$ (i = 1,2,3) be constant with $2Sa_1 + S^2(a_2 + a_3) < 2$. Suppose the mapping $T, f: X \to X$ satisfy the condition for all $x, y \in X$

$$d(Tx, Ty) \ge a_1 d(fx, Tx) + a_2 d(fy, Ty) + a_3 d(fx, Ty)$$
(2.1)

If the range of f contains the range of T and f(x) or T(x) is a complete subspace of X then f and T have unique point of coincidence in X.

Moreover if f and T are weakly compatible then T and f have unique common fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary. Since $T(X) \subseteq f(X)$ then there exists $x_1 \in X$ such that $fx_0 = Tx_1$. Similarly $x_2 \in X$ such that $fx_1 = Tx_2$ for all $n \in N$, we take a sequence $\{x_n\}$ such that

$$fx_n=Tx_{n+1}$$
 (for all $n\in N$). Suppose that, $fx_{n+1}\neq fx_n$ then put $x=x_{n+1},\ y=x_n$ in (2.1), we have

$$d(fx_n, fx_{n-1}) = d(Tx_{n+1}, Tx_n) \ge a_1 d(fx_{n+1}, Tx_{n+1}) + a_2 d(fx_n, Tx_n) + a_3 d(fx_{n+1}, Tx_n)$$

$$d(fx_n, fx_{n-1}) \ge a_1 d(fx_{n+1}, fx_n) + a_2 d(fx_n, fx_{n-1}) + a_3 d(fx_{n+1}, fx_{n-1})$$

$$d(fx_n, fx_{n-1}) \ge a_1 d(fx_{n+1}, fx_n) + a_2 d(fx_n, fx_{n-1}) + Sa_3 d(fx_{n+1}, fx_n) + Sa_3 d(fx_n, fx_{n-1})$$

$$(1-a_2-Sa_3)d(fx_n, fx_{n-1}) \ge (a_1+Sa_3)d(fx_{n+1}, fx_n)$$

$$(a_1 + Sa_3) d(fx_{n+1}, fx_n) \le (1 - a_2 - Sa_3) d(fx_n, fx_{n-1})$$
(2.2)

Now put $x = x_n$ and $y = x_{n+1}$ in (2.1)

$$d(Tx_n, Tx_{n+1}) \ge a_1 d(fx_n, Tx_n) + a_2 d(fx_{n+1}, Tx_{n+1}) + a_3 d(fx_n, Tx_{n+1})$$

$$d(fx_{n-1}, fx_n) \ge a_1 d(fx_n, fx_{n-1}) + a_2 d(fx_{n+1}, fx_n) + a_3 d(fx_n, fx_n)$$

$$a_2 d(fx_{n-1}, fx_n) \le (1-a_1) d(fx_n, fx_{n-1})$$
 (2.3)

The Sciencetech

Adding (2.2) and (2.3), we have

$$(a_1 + a_2 + Sa_3)d(fx_{n+1}, fx_n) \le (2 - a_1 - a_2 - Sa_3)d(fx_n, fx_{n-1})$$

$$d(fx_{n+1}, fx_n) \le \frac{(2 - a_1 - a_2 - Sa_3)}{(a_1 + a_2 + Sa_3)} d(fx_n, fx_{n-1})$$

Since $2Sa_1 + S^2(a_2 + a_3) < 2$, we have

$$d(fx_n, fx_{n+1}) \le K d(fx_n, fx_{n-1})$$
 where $K = \frac{(2-a_1-a_2-Sa_3)}{(a_1+a_2+Sa_3)}$ and

$$K \in \left[0, \frac{1}{S}\right)$$

 $d(fx_n, fx_{n-1}) \le K d(fx_n, fx_{n-1}) \le K^2 d(fx_{n-1}, fx_{n-2}) \le K^3 d(fx_{n-2}, fx_{n-3}) \le \cdots \le K^n d(fx_{n1}, fx_0)$ taking any positive integer m and n we have,

$$d(fx_n, fx_{n+m}) \le Sd(fx_n, fx_{n+1}) + Sd(fx_{n+1}, fx_{n+m})$$

$$\leq Sd(fx_n,fx_{n+1}) + S^2d(fx_{n+1},fx_{n+2}) + S^2d(fx_{n+2},fx_{n+m})$$

$$\leq Sd(fx_{n}, fx_{n+1}) + S^{2}d(fx_{n+1}, fx_{n+2}) + S^{3}d(fx_{n+2}, fx_{n+3}) + \ldots + S^{m-1}d(fx_{n+m-2}, fx_{n+m-1}) + S^{m}d(fx_{n+m-1}, fx_{n+m})$$

$$\leq (Sk^{n} + S^{2}k^{n+1} + S^{3}k^{n+2} + \dots + S^{m}k^{n+m-1})d(fx_{1}, fx_{0})$$

$$= (SK^n / 1 - SK)d(fx_1, fx_0)$$

Since $K \in \left[0, \frac{1}{S}\right)$, we notice that

$$(SK^n/1-SK)d(fx_1,fx_0) \rightarrow 0 \text{ as } n \rightarrow \infty$$

For any $m \in N$ by Lemma (1.10) for any $c \in Int(P)$ we can choose

 $n_0 \in N$ such that

$$\left(SK^{n}/1-SK\right)d\left(fx_{1},fx_{0}\right) << c \text{ for all } n>n_{0}$$

Thus for each $c \in Int(P)$

$$d(fx_{n+m}, fx_n) \square c$$
 for all $n > n_0, m \ge 1$

Therefore $\{fx_n\}$ is a Cauchy sequence in f(X). If $f(X) \subseteq X$ is complete, there exists $q \in p(x)$ and $p \in X$ such that $fx_n \to q$ as $n \to \infty$ and so fp = q. We have to show that Tp = q

Put $x = x_{n+1}$, y = p in (1.1) we have

$$d(fx_{n},Tp) = d(Tx_{n+1},Tp) \ge a_{1}d(fx_{n+1},Tx_{n+1}) + a_{2}(fp,Tp) + a_{3}(fx_{n+1},Tp)$$

$$d(fx_{n},Tp) \ge a_{1}d(fx_{n+1},fx_{n}) + a_{2}d(fp,Tp) + Sa_{3}d(fx_{n+1},fx_{n}) + Sa_{3}d(fx_{n},Tp)$$

$$(1-Sa_{3})d(fx_{n},Tp) \ge (a_{1}+Sa_{3})d(fx_{n},fx_{n+1}) + a_{2}d(q,Tp)$$

$$(2.4)$$

Also put x = p, $y = x_{n+1}$ in (2.1), we have

$$d(Tp, fx_n) = d(Tp, Tx_{n+1}) \ge a_1 d(fp, Tp) + a_2(fx_{n+1}, Tx_{n+1}) + a_3(fp, Tx_{n+1})$$

$$d(Tp,fx_n) \ge a_1 d(fp,Tp) + a_2 d(fx_{n+1}fx_n) + a_3 d(fp,fx_n)$$

$$d(Tp, fx_n) \ge a_1 d(fp, Tp) + a_2 d(fx_{n+1}, fx_n) + Sa_3 d(q, Tp) + Sa_3 d(Tp, fx_n)$$

$$(1 - Sa_3)d(Tp, fx_n) \ge (a_1 + Sa_3)d(q, Tp) + a_2d(fx_n, fx_{n+1})$$
(2.5)

Adding (2.4) & (2.5)

$$(2-2Sa_3)d(fx_n,Tp) \ge (a_1+a_2+a_3)d(fx_n,fx_{n+1}) + (a_1+a_2+Sa_3)d(q,Tp) d(fx_n,Tp) \ge \frac{(a_1+a_2+Sa_3)}{(2-2Sa_3)}d(fx_n,fx_{n+1}) + \frac{(a_1+a_2+Sa_3)}{(2-2Sa_3)}d(q,Tp)$$

Since $c \in Int(P)$, suppose that

$$\frac{\left(a_{1}+a_{2}+Sa_{3}\right)}{(2-2Sa_{3})}d\left(fx_{n},fx_{n+1}\right) << c \text{ and } \frac{\left(a_{1}+a_{2}+Sa_{3}\right)}{(2-2Sa_{3})}d\left(q,Tp\right) << c$$

We have

$$d(fx_n, Tp) \ge \frac{c}{2} + \frac{c}{2} = c$$
. This implies that $d(fx_n, Tp) = 0$. Hence $fp = Tp = q$.

Assume that there exists u, w in X such that fu = Tu = w

$$d(fu fp) = d(Tu,Tp) \ge a_1 d(fu,Tu) + a_2 d(fp,Tp) + a_3 d(fu,Tp)$$

$$d(fu, fp) \ge a_1 d(w, w) + a_2 d(fp, fp) + a_3 d(fu, fp)$$

54

 $a_3d(fu,fp) \le d(fu,fp) \Rightarrow (a_3-1)d(fu,fp) = 0$ this implies that, d(fu,fp) = 0. Thus fu = fp and so fu = fp = q.

Moreover, the mappings T and f are weakly compatible by lemma (1.11) we know that q is the unique common fixed point of f and T.

Theorem 2.2. Let (X,d) be a complete cone b-metric space, with $S \ge 1$ and let $a_i \ge 0$ (i = 1,2,3,4) be constant with $2Sa_1 + S^2(a_2 + a_3) + a_4 < 2$ and the mappings $T, f : X \to X$ are the continuous onto and satisfies the contractive condition, for all $x, y \in X$ $d(Tx,Ty) \ge a_1 d(fx,fy) + a_2 d(fx,Ty) + a_3(Tx,fy) + a_4(fx,Tx)$ (2.6)

If the range of f contains the range of T and f(X) or T(X) is complete subspace of X then f and T have a unique point of coincidence in X.

Moreover if f and T are weakly compatible, then T and f have unique common fixed point in X .

Proof. Let $x_0 \in X$ be arbitrary. Since $T(X) \subseteq f(X)$ then there exists $x_1 \in X$ such that $fx_0 = Tx_1$. By induction a sequence $\{x_n\}$ can be chosen such that $fx_n = Tx_{n+1}$ for all $n \in N$

Suppose that $fx_{n+1} \neq fx_n$ then put $x = x_{n+1}$, $y = x_n$ in (2.6) we have

$$d\left(fx_{n},fx_{n-1}\right) = d\left(Tx_{n+1},Tx_{n}\right)$$

$$\geq a_{1}d\left(fx_{n+1},fx_{n}\right) + a_{2}d\left(fx_{n+1},Tx_{n}\right) + a_{3}d\left(Tx_{n+1},fx_{n}\right) + a_{4}d\left(fx_{n+1},Tx_{n+1}\right)$$

$$d(fx_n, fx_{n-1}) \ge a_1(fx_{n+1}, fx_n) + a_2d(fx_{n+1}, fx_{n-1}) + a_3d(fx_n, fx_n) + a_4d(fx_{n+1}, fx_n)$$

$$d(fx_n, fx_{n-1}) \ge a_1(fx_{n+1}, fx_n) + Sa_2d(fx_{n+1}, fx_n) + Sa_2(fx_n, fx_{n-1}) + a_4d(fx_{n+1}, fx_n)$$

$$(a_1 + Sa_2 + a_4) d(fx_{n+1}, fx_n) \le (1 - Sa_2) d(fx_n, fx_{n-1})$$
(2.7)

Also put $x = x_n$, $y = x_{n+1}$ in (2.6) we have

$$d\left(fx_{n-1}fx_{n}\right) = d\left(Tx_{n},Tx_{n+1}\right)$$

$$\geq a_{1}d\left(fx_{n},fx_{n+1}\right) + a_{2}d\left(fx_{n},Tx_{n+1}\right) + a_{3}d\left(Tx_{n},fx_{n+1}\right) + a_{4}d\left(fx_{n},Tx_{n}\right)$$

$$d(fx_{n-1},fx_n) \ge a_1 d(fx_n,fx_{n+1}) + a_2 d(fx_n,fx_n) + a_3 d(fx_{n-1},fx_{n+1}) + a_4 d(fx_n,fx_{n-1})$$

$$d(fx_{n-1}, fx_n) \ge a_1 d(fx_n, fx_{n+1}) + Sa_3 d(fx_{n-1}, fx_n) + Sa_3 d(fx_n, fx_{n+1}) + a_4 d(fx_n, fx_{n-1})$$

$$(1-Sa_3-a_4)d(fx_{n-1},fx_n) \ge (a_1+Sa_3)d(fx_n,fx_{n+1})$$

$$(a_1 + Sa_3)d(fx_n, fx_{n+1}) \le (1 - Sa_3 - a_4)d(fx_{n-1}, fx_n)$$
(2.8)

Adding (2.7) & (2.8) we have

$$(2a_1 + Sa_2 + Sa_3 + a_4)d(fx_n, fx_{n+1}) \le (2 - Sa_2 - Sa_3 - a_4)d(fx_{n-1}, fx_n)$$

$$d(fx_{n+1}, fx_n) \le \frac{2 - Sa_2 - Sa_3 - a_4}{2a_1 + Sa_2 + Sa_3 + a_4} d(fx_n, fx_{n-1})$$

Since $2Sa_1 + S^2(a_2 + a_3) + a_4 < 2$, so we take

$$K = \frac{2 - Sa_2 - Sa_3 - a_4}{2a_1 + Sa_2 + Sa_3 + a_4}$$
 and $K = \left[0, \frac{1}{S}\right)$

$$d(fx_{n}, fx_{n+1}) \le Kd(fx_{n}, fx_{n-1}) \le K^{2}d(fx_{n-1}, fx_{n-2}) \le K^{3}d(fx_{n-2}, fx_{n-3}) \le \dots \le K^{n}d(fx_{n1}, fx_{n0})$$

taking any positive integer m and n we have,

$$d(fx_n, fx_{n+m}) \le Sd(fx_n, fx_{n+1}) + Sd(fx_{n+1}, fx_{n+m})$$

$$\leq Sd(fx_n, fx_{n+1}) + S^2d(fx_{n+1}, fx_{n+2}) + S^2d(fx_{n+2}, fx_{n+m})$$

$$\leq Sd\left(fx_{n},fx_{n+1}\right)+S^{2}d\left(fx_{n+1},fx_{n+2}\right)+S^{3}d\left(fx_{n+2},fx_{n+3}\right)+\ldots+S^{m-1}d\left(fx_{n+m-2},fx_{n+m-1}\right)+S^{m}d\left(fx_{n+m-1},fx_{n+m}\right)$$

$$\leq (Sk^n + S^2k^{n+1} + S^3k^{n+2} + \dots + S^mk^{n+m-1})d(fx_1, fx_0)$$

$$= SK^n / 1 - SK d \left(f x_1, f x_0 \right)$$

Since
$$K = \begin{bmatrix} 0, \frac{1}{S} \end{bmatrix}$$
, we notice that

$$(SK^n/1-SK)d(fx_1,fx_0) \rightarrow 0 \text{ as } n \rightarrow \infty$$

For any $m \in \mathbb{N}$ by lemma (1.10) for any $c \in Int(P)$ we can choose

 $n_0 \in \mathbb{N}$ such that

$$(SK^n/1-SK)d(fx_1, fx_0) \ll c \text{ for all } n > n_0$$

Thus, for each $c \in Int(P)$

 $d(fx_{n+m},fx_n) << c$ for all $n > n_0, m \ge 1$. Therefore $\{fx_n\}$ is a Cauchy sequence in f(X). If $f(X) \subseteq X$ is complete, there exists $q \in p(x)$ and $p \in X$ such that $fx_n \to q$ as $n \to \infty$ and so fp = q. We have to show that Tp = q

Put $x = x_{n+1}$, y = p in (2.6) we have

$$d(fx_n,Tp)=d(Tx_{n+1},Tp)$$

$$\geq a_1 d(fx_{n+1}, fp) + a_2 d(fx_{n+1}, Tp) + a_3 d(Tx_{n+1}, fp) + a_4 d(fx_{n+1}, Tx_{n+1})$$

$$\geq a_1 d(fx_{n+1}, fp) + a_2 d(fx_{n+1}, Tp) + a_3 d(fx_n, fp) + a_4 d(fx_{n+1}, fx_n)$$

$$d(fx_n, Tp) \ge a_1 d(fx_{n+1}, q) + a_2 d(fx_{n+1}, Tp) + a_3 d(fx_n, q) + a_4 d(fx_{n+1}, fx_n)$$
(2.9)

Also put x = p and $y = x_{n+1}$ in (2.6) we have

$$d(Tp,fx_n) = d(Tp,Tx_{n+1}) \ge a_1 d(fp,fx_{n+1}) + a_2 d(fp,Tx_{n+1}) + a_3 d(Tp,fx_{n+1}) + a_4 d(fp,Tp)$$
(2.10)

Adding (2.9) & (2.10) we have

$$2d(fx_{n},Tp) \ge 2a_{1}d(fx_{n+1},q) + (a_{2}+a_{3})d(Tp,fx_{n+1}) + (a_{2}+a_{3})d(fx_{n},q) + a_{4}d(fx_{n},fx_{n+1}) + a_{4}d(q,Tp)$$

$$2d(fx_{n}, Tp) \ge 2Sa_{1}d(fx_{n+1}fx_{n}) + 2Sa_{1}d(fx_{n}, q) + S(a_{2} + a_{3})d(Tp, fx_{n}) + S(a_{2} + a_{3})d(fx_{n}, fx_{n+1})$$

$$+ \left(a_2 + a_3\right)d\left(fx, fx_{n+1}\right) + Sa_4d\left(q, fx_n\right) + Sa_4d\left(fx_n, Tp\right)$$

$$\left(2-Sa_{2}-Sa_{3}-Sa_{4}\right)d\left(fx_{n},Tp\right)\geq\left(2Sa_{1}+Sa_{2+}Sa_{3}+a_{4}\right)d\left(fx_{n},fx_{n+1}\right)+\left(2Sa_{1}+a_{2}+a_{3}+Sa_{4}\right)d\left(q,fx_{n}\right)$$

$$d(fx_n,Tp) \ge \frac{\left(2Sa_1 + Sa_2 + Sa_3 + a_4\right)}{\left(2 - Sa_2 - Sa_3 - Sa_4\right)}d(fx_n,Tp) + \frac{\left(2Sa_1 + a_2 + a_3 + Sa_4\right)}{\left(2 - Sa_2 - Sa_3 - Sa_4\right)}d(q,fx_n)$$

Since $c \in Int(P)$ suppose that

$$\frac{\left(2Sa_{1}+Sa_{2}+Sa_{3}+a_{4}\right)}{\left(2-Sa_{2}-Sa_{3}-Sa_{4}\right)}d\left(fx_{n},Tp\right) << \frac{c}{2}$$
 and

$$\frac{\left(2Sa_{1}+a_{2}+a_{3}+Sa_{4}\right)}{\left(2-Sa_{2}-Sa_{3}-Sa_{4}\right)}d\left(q,fx_{n}\right) << \frac{c}{2} \text{ then}$$

$$d(fx_n, Tp) \ge \frac{c}{2} + \frac{c}{2} = c$$
. This implies that $d(fx_n, Tp) = 0$. Hence $fp = q = Tp$.

The Sciencetech

57

Assume that there exists u, w in X such that fu = Tu = w.

$$d\left(fu,fp\right) = d(Tu,Tp) \ge a_1 d\left(fu,fp\right) + a_2 d\left(fu,Tp\right) + a_3 d\left(Tu,fp\right) + a_4 d\left(fp,Tp\right)$$

$$d\left(fu,fp\right) \ge a_1 d\left(fu,fp\right) + a_2 d\left(fu,fp\right) + a_3 d\left(fu,fp\right) + a_4 d\left(fp,fp\right)$$

$$\left(1 - a_{1-}a_2 - a_3\right) d\left(fu,fp\right) \ge 0. \text{ This implies that } d\left(fu,fp\right) = 0. \text{ Hence}$$

$$w = fu = fp = q.$$

Moreover the mappings T and f are weakly compatible, by lemma (1.11) we know that q is the unique common fixed point of f and T.

Theorem 2.3. Let (X,d) be a complete cone b-metric space, with $S \ge 1$

and let
$$a_i \ge 0$$
 $(i = 1, 2, 3, 4, 5)$ be constant with $2Sa_1 + S^2(a_2 + a_3) + a_4 + a_5 < 2$ and the mappings $T, f: X \to X$ are the continuous onto and satisfies the contractive condition, for all $x, y \in X$

$$d(Tx,Ty) \ge a_1 d(fx,Ty) + a_2 d(Tx,fy) + a_3 d(fx,Tx) + a_4 d(fx,fy) + a_5 d(fy,Ty)$$
(2.11)

If the range of f contains the range of T and f(X) or T(X) is complete subspace of X then f and T have a unique point of coincidence in X.

Moreover if f and T are weakly compatible, then T and f have unique common fixed point in X .

Proof: Let $x_0 \in X$ be arbitrary. Since $T(X) \subseteq f(X)$ then there exists $x_1 \in X$ such that $fx_0 = Tx_1$. By induction a sequence $\{x_n\}$ can be chosen such that $fx_n = Tx_{n+1}$ for all $n \in \mathbb{N}$

Suppose that $fx_{n+1} \neq fx_n$ then put $x = x_{n+1}$, $y = x_n$ in (2.11) we have

$$d\left(fx_{n},fx_{n-1}\right) = d\left(Tx_{n+1},Tx_{n}\right)$$

$$\geq a_{1}d\left(fx_{n+1},Tx_{n}\right) + a_{2}d\left(Tx_{n+1},fx_{n}\right) + a_{3}d\left(fx_{n+1},Tx_{n+1}\right) + a_{4}d\left(fx_{n+1},fx_{n}\right) + a_{5}d\left(fx_{n},Tx_{n}\right)$$

$$\geq a_{1}\left(fx_{n+1},fx_{n-1}\right) + a_{2}d\left(fx_{n},fx_{n}\right) + a_{3}d\left(fx_{n+1},fx_{n}\right) + a_{4}d\left(fx_{n+1},fx_{n}\right) + a_{5}d\left(fx_{n},fx_{n-1}\right)$$

$$d\left(fx_{n},fx_{n-1}\right) \geq Sa_{1}\left(fx_{n+1},fx_{n}\right) + Sa_{1}d\left(fx_{n},fx_{n-1}\right) + a_{3}d\left(fx_{n+1},fx_{n}\right) + a_{4}d\left(fx_{n+1},fx_{n}\right) + a_{5}d\left(fx_{n},fx_{n-1}\right)$$

$$(1-Sa_1-a_5)d(fx_n, fx_{n-1}) \ge (Sa_1+a_3+a_4)d(fx_{n+1}, fx_n)$$

$$(Sa_1 + a_3 + a_4)d(fx_{n+1}, fx_n) \le (1 - Sa_1 - a_5)d(fx_n, fx_{n-1})$$
 (2.12)

The Sciencetech

Also put $x = x_n$, $y = x_{n+1}$ in (2.11) we have

$$d\left(fx_{n-1}fx_n\right) = d\left(Tx_n,Tx_{n+1}\right)$$

$$d\left(fx_{n-1},fx_{n}\right) \ge a_{1}d\left(fx_{n},Tx_{n+1}\right) + a_{2}d\left(Tx_{n},fx_{n+1}\right) + a_{3}d\left(fx_{n},Tx_{n}\right) + a_{4}d\left(fx_{n},fx_{n+1}\right) + a_{5}d\left(fx_{n+1},Tx_{n+1}\right)$$

$$d(fx_{n-1},fx_n) \ge a_1 d(fx_n,fx_n) + a_2 d(fx_{n-1},fx_{n+1}) + a_3 d(fx_n,fx_{n-1}) + a_4 d(fx_n,fx_{n+1}) + a_5 d(fx_{n+1},fx_n)$$

$$(1-Sa_2-a_3)d(fx_{n-1},fx_n) \ge (Sa_2+a_4+a_5)d(fx_n,fx_{n+1})$$

$$(Sa_2 + a_4 + a_5)d(fx_n, fx_{n+1}) \le (1 - Sa_2 - a_3)d(fx_{n-1}, fx_n)$$
 (2.13)

Adding (2.12) & (2.13) we have

$$\left(Sa_1 + Sa_{2+}a_3 + 2a_4 + a_5 \right) d \left(fx_n, fx_{n+1} \right) \le \left(2 - Sa_1 - Sa_2 - a_3 - a_5 \right) d \left(fx_{n-1}, fx_n \right)$$

$$d(fx_{n+1}, fx_n) \le \frac{(2 - Sa_1 - Sa_2 - a_3 - a_5)}{(Sa_1 + Sa_2 + a_3 + 2a_4 + a_5)} d(fx_n, fx_{n-1})$$

Since $2Sa_1 + S^2(a_2 + a_3) + a_4 + a_5 < 2$, so we take

$$K = \frac{\left(2 - Sa_1 - Sa_2 - a_3 - a_5\right)}{\left(Sa_1 + Sa_2 + a_3 + 2a_4 + a_5\right)} \text{ and } K = \left[0, \frac{1}{S}\right]$$

$$d(fx_n, fx_{n+1}) \le Kd(fx_n, fx_{n-1}) \le K^2d(fx_{n-1}, fx_{n-2}) \le K^3d(fx_{n-2}, fx_{n-3}) \le \dots \le K^nd(fx_n, fx_0)$$

taking any positive integer m & n we have.

$$d(fx_n, fx_{n+m}) \le Sd(fx_n, fx_{n+1}) + Sd(fx_{n+1}, fx_{n+m})$$

$$\leq Sd(fx_n,fx_{n+1}) + S^2d(fx_{n+1},fx_{n+2}) + S^2d(fx_{n+2},fx_{n+m})$$

$$\leq Sd\left(fx_{n},fx_{n+1}\right)+S^{2}d\left(fx_{n+1},fx_{n+2}\right)+S^{3}d\left(fx_{n+2},fx_{n+3}\right)+\ldots+S^{m-1}d\left(fx_{n+m-2},fx_{n+m-1}\right)+S^{m}d\left(fx_{n+m-1},fx_{n+m}\right)$$

$$\leq (Sk^n + s^2k^{n+1} + S^3k^{n+2} + \dots + S^mk^{n+m-1})d(fx_1, fx_0)$$

$$= (SK^n / 1 - SK)d(fx_1, fx_0)$$

Since
$$K \in \left[0, \frac{1}{S}\right)$$
, we notice that

$$(SK^n/1-SK)d(fx_1,fx_0) \rightarrow 0 \text{ as } n \rightarrow \infty$$

For any $m \in N$ by lemma (1.10) for any $c \in Int(P)$ we can choose $n_0 \in N$ such that

$$\left(SK^n/1-SK\right)d\left(fx_1,fx_0\right)<< c$$
 for all $n_0\in N$. Thus, for each $c\in Int(P)$

 $d(fx_{n+m},fx_n) << c ext{ for all } n>n_0, m\geq 1$. Therefore $\{fx_n\}$ is a Cauchy sequence in f(X). If $f(X)\subseteq X$ is complete, there exists $q\in p(x)$ and $p\in X$ such that $fx_n\to q$ as $n\to\infty$ and so fp=q. We have to show that Tp=q

Put $x = x_{n+1}$, y = p in (2.11) we have

$$d(fx_{n},Tp) = d(Tx_{n+1},Tp) \ge a_1d(fx_{n+1},Tp) + a_2d(Tx_{n+1},fp) + a_3d(fx_{n+1},Tx_{n+1}) + a_4d(fx_{n+1},fp) + a_5d(fp,Tp)$$

$$\geq a_1 d(fx_{n+1}, Tp) + a_2 d(fx_n, fp) + a_3 d(fx_{n+1}, fx_n) + a_4 d(fx_{n+1}, fp) + a_5 d(fp, Tp)$$

$$d(fx_{n},Tp) \ge a_{1}d(fx_{n+1},Tp) + a_{2}d(fx_{n},q) + a_{3}d(fx_{n+1},fx_{n}) + a_{4}d(fx_{n+1},q) + a_{5}d(q,Tp)$$
(2.14)

Also put x = p and $y = x_{n+1}$ in (2.11) we have

$$d(Tp,fx_n) = d(Tp,Tx_{n+1}) \ge ad(fp,Tx_{n+1}) + ad(Tp,fx_{n+1}) + ad(fp,Tp) + ad(fp,Tp) + ad(fp,Tx_{n+1}) + ad(fx_{n+1},Tx_{n+1})$$

$$d(T, fx_n) \ge a_1 d(q, fx_n) + a_2 d(Tp, fx_{n+1}) + a_3 d(q, Tp) + a_4 d(q, fx_{n+1}) + a_5 d(fx_{n+1}, fx_n)$$
(2.15)

Adding (2.14) & (2.15) we have

$$2d(fx_n,Tp) \ge (a_1+a_2)d(Tp_1,fx_{n+1}) + (a_1+a_2)d(fx_n,q) + (a_3+a_5)d(fx_n,fx_{n+1}) + 2a_2d(q_1,fx_{n+1})$$

$$+(a_3+a_5)d(q,Tp)$$

$$2d(fx_n, Tp) \ge S(a_1 + a_2)d(fx_{n+1}, fx_n) + S(a_1 + a_2)d(fx_n, Tp) + S(a_2 + a_3)d(Tp, fx_n) + (a_3 + a_5)d(fx_n, fx_{n+1})$$

$$+(a_1+a_2)d(fx_n,q)+2Sa_3d(q,fx_n)+2Sa_4d(fx_n,fx_{n+1})+S(a_3+a_5)d(fx_n,q)$$

$$2d(fx_{\alpha},Tp) \ge S(a_1+a_2)d(fx_{\alpha+1}fx_{\alpha}) + S(a_1+a_2)d(fx_{\alpha},p) + S(a_2+a_3)d(Tp,fx_{\alpha}) + (a_2+a_3)d(fx_{\alpha},fx_{\alpha+1})$$

$$+(a_1+a_2)d(fx_n,q)+2Sa_4d(q,fx_n)+2Sa_4d(fx_n,fx_{n+1})+S(a_3+a_5)d(fx_n,q)$$

$$\left(2 - Sa_1 - Sa_2 - Sa_3 - Sa_5\right) d\left(fx_n, Tp\right) \ge \left(Sa_1 + Sa_2 + a_3 + 2Sa_4 + a_5\right) d\left(fx_n, fx_{n+1}\right)$$

$$+(a_1+a_2+Sa_3+2Sa_4+Sa_5)d(q,fx_n)$$

$$d(fx_n,Tp) \ge \frac{(Sa_1 + Sa_2 + a_3 + 2Sa_4 + a_5)}{(2 - Sa_1 - Sa_2 - Sa_3 - Sa_5)} d(fx_n,Tp) + \frac{(a_1 + a_2 + Sa_3 + 2Sa_4 + Sa_5)}{(2 - Sa_1 - Sa_2 - Sa_3 - Sa_5)} d(q,fx_n)$$

Since $c \in Int(p)$, suppose that

$$\frac{\left(Sa_{1}+Sa_{2}+a_{3}+2Sa_{4}+a_{5}\right)}{\left(2-Sa_{1}-Sa_{2}-Sa_{3}-Sa_{5}\right)}d\left(fx_{n},Tp\right) << \frac{c}{2},$$

$$\frac{\left(a_{1}+a_{2}+Sa_{3}+2Sa_{4}+Sa_{5}\right)}{\left(2-Sa_{1}-Sa_{2}-Sa_{3}-Sa_{5}\right)}d\left(q,fx_{n}\right) << \frac{c}{2}$$

Then
$$d(fx_n, Tp) \ge \frac{c}{2} + \frac{c}{2} = c$$
. This implies that $d(fx_n, Tp) = 0$.

Hence fp = q = Tp.

Assume that there exists u, w in X such that fu = Tu = w

$$d\left(fu,fp\right) = d\left(Tu,Tp\right) \ge a_1 d\left(fu,Tp\right) + a_2 d\left(Tu,fp\right) + a_3 d\left(fu,fu\right) + a_4 d\left(fu,fp\right) + a_5 d\left(fp,Tp\right)$$

$$d(fu,fp) \ge a_1 d(fu,fp) + a_2 d(fu,fp) + a_3 d(fu,fp) + a_4 d(fp,fp) + a_5 d(fp,fp)$$

$$d(fu,fp) \ge (a_1 + a_2 + a_3)d(fu,fp)$$

Since $0 \le a_1 + a_2 + a_3 < 1$ by lemma (1.10) we can obtain that d(fu, fp) = 0. Hence w = fu = fp = q. Moreover the mappings T and f are weakly compatible, by lemma (1.11) we know that q is the unique common fixed point of f and T.

Corollary 2.4. If f = I in the theorem 2.2, we get the result 2.1 of [19].

References

Abbas, M., and Jungck, G., (2008). Common fixed-point results for non-commuting mapping without continuity in cone metric spaces, *J. Math. Anal. Appl.*, 341 (1) 416–420.

Ayadi, H., Bota, M., Karapinar, E., and Mitrovic, S., (2012). A fixed-point theorem for set valued quasi contraction in b-metric spaces, fixed *point theory and application* 2012: 88.

Banach, S., (1922). Surles operations dansles ensembles abstraitsetleur application aux equations integrals, *Fund. Math.* (3)133–181.

Boriceanu, M., (2008). Fixed point theory for multivalued contraction on a set with two b-metric spaces, *CREATIVE MATH*. &*INF*, (17) No. 3,326-332.

Bakhtin, IA., (1989). The contraction mapping principle in almost metric space. Func. Anal, Gos. Ped. Inst. Unianowsk, 30, 26-37.

- Chintaman, T.A., and Salunke, J. N., (2011). Some common fixed-point theorems for expansive mappings on cone metric spaces, Acta *Math sinica*, *English series*, 27 (6), 1101–1106.
- Czerwik, S., (1998). Nonlinear set-valued contraction mapping in b-metric spaces. *AttiSemin. Mat. Fis. Univ. Modena.* 46, 263-276.
- Gornicki, J., (2017). Fixed point theorems for F-expanding mappings. *Fixed Point Theory Appl.* 9.
- Gurban, R., Alfaqih, W.M., Imdad, M., (2019). Fixed point results for F-expansive mappings in ordered metric spaces. *Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.* 68, 801-808.
- Hussain, N., and Shah, M.H., (2011). KKM mappings in cone b-metric spaces, *comput. Math. Appl.*62(4)1677-1684.
- Huang, L.G., and Zhang, X., (2007). Cone metric spaces and fixed-point theorems of contractive mappings. *J. math. Anal.* 332 (2), 1468-1476.
- Haung, H., and Xu, S., (2012). Fixed point theorems of contractive mappings in cone b-metric spaces and applications. *Fixed point theory Appl.*, 220.
- Haung, H., and Xu, Sh., (2013). Fixed point theorems of contractive mappings in cone b-metric spaces & applications, *fixed point theory and Applications*.,112.
- Kumar S., and Garg, S.K., (2009). Expansive mappings theorems in metric spaces, *Inc. contempt. Math. Science*, 4(36)1749-1758.
- Marians, I., Branga, A., (2012). Common fixed-point results in cone b. metric spaces over topological vector spaces. *Gen. Math.* 20(1), 50
- Kadelburg, Z., Radenovic, S., Rakocevic, V., (2009). Remarks on Quasicontraction on a cone metric space. *Appl.Math. Lett.*22(110), 1674-1679.
- Rezapour, Sh., Hamlbarani, R., (2008). some notes on the paper "cone metric spaces and fixed-point theorems of contractive mappings, *J.Math.Anal.Appl.* 345, 719-724.
- Song, G-X., Sun, X-Y., Zhao, Y., Wang, (2010). G-T, new common fixed-point theorems for maps on cone metric spaces. *App. Math. Lett.* 32, 1033-1037.
- Shi, L., and Xu, S., (2013). common fixed-point theorems for two weakly compatible self-mappings in cone b-metric spaces, *Fixed point theory and Applications* 2013:120.

62.

Yesilkaya, S.S., Aydin, C., (2020). Fixed Point results of expansive mappings in metric spaces. \sum *mathematics*, 8.