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Abstract 
Software failure in an operational environment can put the performance and 

quality of service at risk. This research is particularly on software failure 

incidents. The study involves the basic software engineering process: 

Classification of software failure incidents through machine learning techniques. 

The active learning approach is used, which is applied to label only those data 

which is most in-formative to build models. From all the samples, the sample with 

higher entropy (randomness) is chosen for labeling. Given a set of labeled 

observations, we used a classifier that decides the target class label, either 

“failure” or “no failure”. As a classifier mechanism, Support Vector Machine 
(SVM) is used to classify the data.  
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Introduction 

Software failures can be understood from the two approaches 

software-centric and system-centric. According to  (Chu, Lehner, 

Martinez-Guridi, & Yue, 2006), the software-centric methodology views 

“failure” as a property of the software itself (Ogheneovo, 2014). This 

approach considers the failure only associated with the software itself and 

has no impact on the entire system. While according to the system-centric 

approach, software failure not relates to the software itself but also to the 

entire system. Thus, in the light of these two approaches, failure can be 

defined as the “failure in the system to perform the required function”. 

Despite all the efforts, many of the errors remain in the software delivered 

to the customer, resulting in the software failure. These failures affect 

users, clients, and the operation handling staff, leading to long-time 

unavailability of the system, maintenance cost, and low quality. In recent 

years, many failures occur due to which many people lost their lives, and 
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many organizations lost their reputations and suffered a capital loss. For 

these reasons, recent research investigated the nature of software failures 

and countermeasures against them. 

As noted in (George Box, 2010), discovering the unexpected is 

more important than confirming the known. Thus, in software 

development, the “unexpected” one relates to defects. These defects, when 

unattended, often cause failure (Anwar et al., 2021; Chillarege et al., 1992; 

Mann, 2002). Thus, software failure is the software's inappropriate 

behavior and the software's incompetence to conform to the user 

requirements.  

The failure is the software's lack of capability to perform its 

intended function within a certain environment. To a user, failure is the 

termination of his/her required function. The user may decide to identify 

the various levels of failure, such as catastrophic, which could be major or 

minor, depending on their impacts and consequences on the system, such 

as monetary value (cost), human life, and property lost (Khan, Ali, & 

Khusro, 2019; Ogheneovo, 2014). Failures are incorrect external events. 

In this era, software is inescapable; everyone doing a job in any department 

or the student studying anything comes in touch with this product. People 

are attached to it but don’t realize it until they face any given problem. The 

software itself is not easy to develop and maintain, but the most 

challenging task is to understand, especially for the people who are not IT 

related. It is among the most labor-intensive, multifaceted, and error-prone 

technologies in human history (Kumaresh & Ramachandran, 2012). 

Dijkstra (Dijkstra, Dijkstra, Dijkstra, & Dijkstra, 1976) notes that “the 

average computer user has been served so poorly that he expects his 

system to crash all the time, and we witness a massive worldwide 

distribution of bug-ridden software for which we should be deeply 

ashamed”. Given a system or software, it would be valuable to define its 

behavior to help set up the rightness of the applications that keep running 

on it. On the off chance that this forces confinement on the reasonable 

conduct of the applications, we should see how these limitations can be 

implemented and the suggestions in debilitating or strengthening them. A 

helpful strategy for building such a formal depiction regarding adaptation 

to non-critical failure is to sort the system components as indicated by the 

sorts of faults they are expected to display. Four conceivable 

classifications of failures are Omission, Value, Timing, and arbitrary. The 

reaction from a given segment for given information will be thought to be 

right if the yield esteem is right and that the yield is delivered on time, i.e., 

created inside a predefined time restrain. Failures are basically due to 

system complexity, insufficient testing and/or poor understanding of 

system dependencies, even if the site owner is unaware of the root causes 
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of the failures. Other significant software failure causes are system 

overload, resource exhaustion, and complex fault recovery routines (Gray, 

1990; Khan, Khusro, Ali, & Din, 2016). Common causes of software 

failures are the deficiency of clear specifications and objectives, poor 

management, poor communication among designers and customers, use of 

new technology, lack of experience of the designers. Software availability 

can be enhanced by predicting the software downtime and the errors and 

faults that lead to software failure. Researches on the prediction of 

software failure highlighted many causes of software failure. Among them, 

software aging has gained more attention. According to Hoffman 

(Hoffmann, Salfner, & Malek, 2011), software aging describes the 

misbehavior of software that does not cause the component to fail 

immediately. Software aging does not lead directly to the failure of the 

component but enhances the chances of system software system failure at 

a whole. (Garg, Puliafito, Telek, & Trivedi, 1998) proposed a time series-

based model for the recognition of software aging. 

The current section is about a brief introduction related to software 

incidents. Section two present the related work done by different authors. 

The third section is about the detailed methodology of this study, while the 

fourth section is about the detailed discussion. The conclusion and future 

work is presented in section fifth and sixth, respectively.  

 

Related Work 

During the last few decades, efforts made to predict failure are 

remarkable. Failures or failure classification is a broad concept in software 

engineering and is not just limited to software failure. Failure classification 

techniques are equally common in both hardware and software. In 

hardware (e.g., satellite (Meneely & Williams, 2012), cluster computing 

systems (Li & Lan, 2006), distributed mission-critical systems (Li & Lan, 

2006), and telecommunication systems (Baldoni, Lodi, Montanari, 

Mariotta, & Rizzuto, 2012) these techniques are widely discussed in the 

literature. But with the increase in complexity of the software systems and 

the high demand of their failures have been largely shifted to the software 

(Salfner & Tschirpke, 2008). H. Taherdoost and (Salfner, Lenk, & Malek, 

2010) conducted a survey to analyze the failure and the success causes of 

the different information technology projects. They conducted the survey 

involving the different factors directly or indirectly related to the causes 

of failures such as the people, processes, and the technical and non-

technical. Large margin classifiers such as SVM classify data using the 

most useful data points. This makes them natural candidates, for instance, 

selection strategies. Their underlying basic algorithms describe active 

learning current methods. Kamal Nigam (Tong & Koller, 2001) 
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introduced an algorithm using the EM and the naïve Bayes classifier using 

both the label and the unlabeled data. Lewis (Lewis & Gale, 1994) used 

the uncertainty sampling method with the Bayesian network and the 

logistic regression. Here the uncertainty sampling goal was to reduce the 

folded size while maintaining the accuracy of the results. Colin Cambell 

(Campbell, Cristianini, & Smola, 2000) also uses the instance selection to 

train the large margin classifier, the Support Vector Machine (SVM). (Xu, 

Yu, Tresp, Xu, & Wang, 2003) used active learning for text classification.      

Representative sampling was purposed for selecting the instances based 

on the similarity and the informativeness along with the SVM classifier 

for the text classification. (Lu & Cukic, 2012) used active learning to 

predict failure and the Naïve-Bayes classifier.  

The combination of both approaches opened a new window in this 

field of prediction. However, due to the computational infeasibility of the 

naïve-Bayes classifier, this was not the best combinational approach. 

(Guerra et al., 2011) conducted a study comparing the different machine 

learning approaches and showed the results of these supervised and 

unsupervised experiments such as naïve Bayes, K-nn, PCA, etc. Their 

results clearly show that unsupervised learning couldn’t perform well in 

the case of prediction purposes. 

 In this research, the classifier SVM is chosen because of its 

success in classifying the most informative instances. SVM is the large 

margin classifier which has made it a strong candidate for the instance 

sampling strategies. SVMs can successfully be applied to solve prediction 

problems to examine the likelihood (Cao, 2003; Tay & Cao, 2001). 

Through experiments proved that the SVM outperformed when compared 

to the BP neural network in terms of the normalized mean square error 

(NMSE) and mean absolute error (MAE). (Mohandes, Halawani, Rehman, 

& Hussain, 2004) found that based on the wind speed data, the hourly 

speed of the wind can be better predicted with the SVM and the 

Backpropagation model, (Mohandes et al., 2004) investigated the DNA 

repair pathways and based on the SNP data using the SVM classifier for 

the prediction of the oral cancer risks. Their results showed that SVM 

Outperformed both in terms of precision and measure when compared to 

the other classifiers. Time series ARMA model built to detect the aging 

and forecast the resource exhaustion times. 

 

Methodology 

This study proposed a model for software failure incident 

classification using active learning and the SVM. Active learning is 

performed on the dataset that reduced the dataset size and selected the 

sample out of it which we used as the training set for the SVM classifier. 
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The selected sample consists of the instances that were unique and 

informative for training the classifier. Active learning is performed with 

the clustering technique in this study. To feed the active learning process, 

k-mean clustering is performed in our approach clustering. Data is first 

clustered with k-mean clustering strategy, and the clusters representatives 

were used for the labeling. These instances in the center of the clusters 

were collected and were manually labeled. This labeled data was used as 

the training set of the classifier SVM and classification is carried out on 

this data. The training set obtained after the clustering seemed to be free 

of any repetitive data and the instances carrying no valuable information. 

Clustering here in this study was kept constant, and label propagation was 

not performed given in figure 1 and 2.  

The machine learning method used for active learning are many 

including the SVM (Yousafzai et al., 2021). This method is the most 

widely used method of machine learning, which has a strong theoretical 

background. It showed significant performance in image retrieval, text 

categorization, and handwritten digits recognition. SVM classifiers are 

most well-suited for active learning due to their appropriate mathematical 

properties. The goal of SVM is to discover a decision rule with great 

simplification Capability through choosing some specific subset of dataset 

called support vectors. In this strategy, an ideal isolating hyperplane is 

built, mapping the information space nonlinearly into a higher dimensional 

feature space. Support vector machine is given the labeled data consisting 

of the two different classes, and then the classifier generates results for that 

labeled data. The results of the labeled data can be generalized to the 

unlabeled data.  

 
Figure 1.Binary classification, SVM 
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Figure 2. Binary classification, SVM 

Kernel tricks make it possible to handle diverse data easily. 

Support vector machines use the Kernal trick to maximize the distance 

between the support vectors and hyperplane. Weight functions of the 

SVMs are inspected to identify the features that significantly influence the 

whole data set. Those features are then considered to have a significant 

impact on the classification. 

With the success of the SVMs the researchers moved a step ahead 

and added the extension to the SVM classifier in the form of the capability 

of solving the multiclass problems depicted in figure 3 and figure 4. 

Multiclass is the term that means every instance is assigned, one class. In 

other words, it can be said mutually exclusive. There are several different 

ways proposed in the literature on how to perform multiclass classification 

with the SVM. There are two basic ways: Treat the whole dataset as once 

with all the classes or perform the binary classification on the chunks of 

the data and then combine the outputs. 

              

 
Figure 3.Multiclass classification, SVM 
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Figure 4. Multiclass classification, SVM 

Software packages for implementing the Support Vector 

Machines are easily available and can be downloaded freely. This research 

is prediction-oriented. Software package capable of implementing the both 

with same success rate was not easy to choose so many of the software 

packages were observed for prediction problems. Their capabilities, 

accuracy, and speed were tested before choosing one of them. The 

mentioned packages were evaluated:  

 

Libsvm, Svmtorch, Sequential Minimal Optimization (SMO). 

In this research the SVM package used for the classification is the 

SMO due to its benefits over other packages such as SMO requires no 

additional framework stockpiling by any means. In this way, extensive 

SVM preparing issues can fit within the memory of a common PC or 

workstation. Since no lattice calculations are utilized as a part of SMO, it 

is less vulnerable to numerical accuracy issue. 

 

Discussion  

The proposed model showed 84% accuracy and classified most of 

the instances correctly while just incorrectly classifying the two. The test 

model figure 4.13 is the detailed accuracy measure of the model with 

different terms such as f-measure, precision etc.  Before discussing the 

metric, some terms need to know, such as the True positive Rate, FP Rate, 

Precision, Recall, F-Measure, MCC, ROC Area, and PRC Area.  

 

True positive (TP) 

Values, which are observed positive, and are predicted positive. In our 

model the TP rate for “failed” level is “1.000” for status-ok “0.5”, for error 

“1.00”, and for the warning its “0.833”.   
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False positive (Fp) 

Observed value is negative, but the prediction result is positive. In our case 

its “0.08” for failure level, “0.111” for error level. 

 

Precision 

Precision is the measure of the correctly identified positive events divided 

by the total predicted events. For failure, it is “0.5”, status-ok “1.000”, for 

error the precision rate is “0.8”, and for warning its “1.00” given in figure 

5. 

  Precision = True Positive /True Positive +False Positive  

 
Figure 5. Failure Precision (Plot under ROC) 

Recall 

Recall is the correctly forecasted positive values divided by all 

observations. Recall, as mentioned, is the ratio of the true positive 

observation and the total observation in our case the. For failure it is 

“1.000”, status-ok “0.5”, for error the recall is “1.000”, and for warning its 

“0.833”.  

 Recall = True positive / True positive +False Negative  

 

F-measure 

This the average of both precision and recall. In our model for failure it is 

“0.667”, status-ok “0.677”, for error the f-measure is “0.84”, and for 

warning its “0.85” mentioned in figure 6 and table 1.                                     

       F measure = 2(Recall x Precision) / (Recall x Precision) 
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Table.1 

 

Detailed Accuracy 

 
Figure 6. Failure F-measure (Plot under ROC)           

 

Confusion Matrix 

The confusion matrix or the error matrix is the visualization of the 

technique's performance or can say, the algorithm used. Rows contain the 

predicted instances, and the columns represent the actual instances 

mentioned in table 2.  
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Table.2. 

 Confusion Matrix 

 

 
Conclusion 

In general, every failure is essential regarding both security and 

cost. Enhanced and improved maintenance schedules can be 

acknowledged with forecasting techniques. Failures prediction helps in 

predicting the maintenance times, which counteract both security richness 

and diminish costs. This study proposed a model for predicting failures 

using the machine learning methods clustering and the classification of the 

selected instances through the support vector machine (SVM). SVM 

calculation is capable of anticipating, yet it is not clear to decide the 

parameter esteems that will yield an agreeable outcome. Then again, it is 

difficult to model a function for the transformative calculations to be 

utilized to determine that needs the blend of the considerable number of 

conceivable outcomes. This research classified the failures of the software 

to optimize the maintenance schedules. The study showed and anticipated 

failures of complex software systems. Log documents are gathered of the 

4 characteristics and 100 examples. Event-driven error log records are 

displayed with grouping and SVM. The outcomes demonstrate the 

predominant execution of active learning and the SVM. Expecting that all 

figure failures can be maintained a strategic distance from our displaying 

strategies may prompt a great change of framework accessibility. The 

purposed show accomplishes the best execution with the most instructive 

information.  

 

Future work  

This research is particularly focused on the use of the SVM to 

classify the failure of software, and it might have left any question in the 
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readers and researchers such as the preferred usage of the ML techniques 

such as SVM and active learning. 

Future work will incorporate research on the legality of our model 

and its comparison with the other proposed models for the failure 

classification. We have provided an overview of the previous approaches 

for failure classification, but not in terms of the TP Rate, FP Rate, 

Precision-Recall, F-Measure, MCC, ROC Area, and PRC Area. The future 

study will provide an analytical evaluation of the machine learning 

techniques for prediction purposes. The results of the different techniques 

will be generated with the same set of data by using differently supervised 

and unsupervised techniques and classifiers.  
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