
Classification of Software Failure Incidents Using SVM

Islam Zada*, Inayat Khan†, Taj Rahman‡, Abid Jameel§

Abstract
Software failure in an operational environment can put the performance and

quality of service at risk. This research is particularly on software failure

incidents. The study involves the basic software engineering process:

Classification of software failure incidents through machine learning techniques.

The active learning approach is used, which is applied to label only those data

which is most in-formative to build models. From all the samples, the sample with

higher entropy (randomness) is chosen for labeling. Given a set of labeled

observations, we used a classifier that decides the target class label, either

“failure” or “no failure”. As a classifier mechanism, Support Vector Machine
(SVM) is used to classify the data.

 Keywords: incident, machine learning, active learning, SVM

Introduction

Software failures can be understood from the two approaches

software-centric and system-centric. According to (Chu, Lehner,

Martinez-Guridi, & Yue, 2006), the software-centric methodology views

“failure” as a property of the software itself (Ogheneovo, 2014). This

approach considers the failure only associated with the software itself and

has no impact on the entire system. While according to the system-centric

approach, software failure not relates to the software itself but also to the

entire system. Thus, in the light of these two approaches, failure can be

defined as the “failure in the system to perform the required function”.

Despite all the efforts, many of the errors remain in the software delivered

to the customer, resulting in the software failure. These failures affect

users, clients, and the operation handling staff, leading to long-time

unavailability of the system, maintenance cost, and low quality. In recent

years, many failures occur due to which many people lost their lives, and

* Department of Computer Science & Software Engineering, International Islamic

University Islamabad, Pakistan. islam.zada@iiui.edu.pk
† Department of Computer Science, University of Buner, Buner 19290, Pakistan.

inayat_khan@uop.edu.pk
‡ Qurtuba University of Science & Technology Peshawar, Peshawar 25000,

Pakistan. drtaj@qurtuba.edu.pk
§ Department of Computer Science & Information Technology, Hazara

University Mansehra, Pakistan. abidjameel717@gmail.com,

mailto:islam.zada@iiui.edu.pk
mailto:drtaj@qurtuba.edu.pk
mailto:abidjameel717@gmail.com

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 2 Volume 2 Issue 3, July-September 2021

many organizations lost their reputations and suffered a capital loss. For

these reasons, recent research investigated the nature of software failures

and countermeasures against them.

As noted in (George Box, 2010), discovering the unexpected is

more important than confirming the known. Thus, in software

development, the “unexpected” one relates to defects. These defects, when

unattended, often cause failure (Anwar et al., 2021; Chillarege et al., 1992;

Mann, 2002). Thus, software failure is the software's inappropriate

behavior and the software's incompetence to conform to the user

requirements.

The failure is the software's lack of capability to perform its

intended function within a certain environment. To a user, failure is the

termination of his/her required function. The user may decide to identify

the various levels of failure, such as catastrophic, which could be major or

minor, depending on their impacts and consequences on the system, such

as monetary value (cost), human life, and property lost (Khan, Ali, &

Khusro, 2019; Ogheneovo, 2014). Failures are incorrect external events.

In this era, software is inescapable; everyone doing a job in any department

or the student studying anything comes in touch with this product. People

are attached to it but don’t realize it until they face any given problem. The

software itself is not easy to develop and maintain, but the most

challenging task is to understand, especially for the people who are not IT

related. It is among the most labor-intensive, multifaceted, and error-prone

technologies in human history (Kumaresh & Ramachandran, 2012).

Dijkstra (Dijkstra, Dijkstra, Dijkstra, & Dijkstra, 1976) notes that “the

average computer user has been served so poorly that he expects his

system to crash all the time, and we witness a massive worldwide

distribution of bug-ridden software for which we should be deeply

ashamed”. Given a system or software, it would be valuable to define its

behavior to help set up the rightness of the applications that keep running

on it. On the off chance that this forces confinement on the reasonable

conduct of the applications, we should see how these limitations can be

implemented and the suggestions in debilitating or strengthening them. A

helpful strategy for building such a formal depiction regarding adaptation

to non-critical failure is to sort the system components as indicated by the

sorts of faults they are expected to display. Four conceivable

classifications of failures are Omission, Value, Timing, and arbitrary. The

reaction from a given segment for given information will be thought to be

right if the yield esteem is right and that the yield is delivered on time, i.e.,

created inside a predefined time restrain. Failures are basically due to

system complexity, insufficient testing and/or poor understanding of

system dependencies, even if the site owner is unaware of the root causes

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 3 Volume 2 Issue 3, July-September 2021

of the failures. Other significant software failure causes are system

overload, resource exhaustion, and complex fault recovery routines (Gray,

1990; Khan, Khusro, Ali, & Din, 2016). Common causes of software

failures are the deficiency of clear specifications and objectives, poor

management, poor communication among designers and customers, use of

new technology, lack of experience of the designers. Software availability

can be enhanced by predicting the software downtime and the errors and

faults that lead to software failure. Researches on the prediction of

software failure highlighted many causes of software failure. Among them,

software aging has gained more attention. According to Hoffman

(Hoffmann, Salfner, & Malek, 2011), software aging describes the

misbehavior of software that does not cause the component to fail

immediately. Software aging does not lead directly to the failure of the

component but enhances the chances of system software system failure at

a whole. (Garg, Puliafito, Telek, & Trivedi, 1998) proposed a time series-

based model for the recognition of software aging.

The current section is about a brief introduction related to software

incidents. Section two present the related work done by different authors.

The third section is about the detailed methodology of this study, while the

fourth section is about the detailed discussion. The conclusion and future

work is presented in section fifth and sixth, respectively.

Related Work

During the last few decades, efforts made to predict failure are

remarkable. Failures or failure classification is a broad concept in software

engineering and is not just limited to software failure. Failure classification

techniques are equally common in both hardware and software. In

hardware (e.g., satellite (Meneely & Williams, 2012), cluster computing

systems (Li & Lan, 2006), distributed mission-critical systems (Li & Lan,

2006), and telecommunication systems (Baldoni, Lodi, Montanari,

Mariotta, & Rizzuto, 2012) these techniques are widely discussed in the

literature. But with the increase in complexity of the software systems and

the high demand of their failures have been largely shifted to the software

(Salfner & Tschirpke, 2008). H. Taherdoost and (Salfner, Lenk, & Malek,

2010) conducted a survey to analyze the failure and the success causes of

the different information technology projects. They conducted the survey

involving the different factors directly or indirectly related to the causes

of failures such as the people, processes, and the technical and non-

technical. Large margin classifiers such as SVM classify data using the

most useful data points. This makes them natural candidates, for instance,

selection strategies. Their underlying basic algorithms describe active

learning current methods. Kamal Nigam (Tong & Koller, 2001)

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 4 Volume 2 Issue 3, July-September 2021

introduced an algorithm using the EM and the naïve Bayes classifier using

both the label and the unlabeled data. Lewis (Lewis & Gale, 1994) used

the uncertainty sampling method with the Bayesian network and the

logistic regression. Here the uncertainty sampling goal was to reduce the

folded size while maintaining the accuracy of the results. Colin Cambell

(Campbell, Cristianini, & Smola, 2000) also uses the instance selection to

train the large margin classifier, the Support Vector Machine (SVM). (Xu,

Yu, Tresp, Xu, & Wang, 2003) used active learning for text classification.

Representative sampling was purposed for selecting the instances based

on the similarity and the informativeness along with the SVM classifier

for the text classification. (Lu & Cukic, 2012) used active learning to

predict failure and the Naïve-Bayes classifier.

The combination of both approaches opened a new window in this

field of prediction. However, due to the computational infeasibility of the

naïve-Bayes classifier, this was not the best combinational approach.

(Guerra et al., 2011) conducted a study comparing the different machine

learning approaches and showed the results of these supervised and

unsupervised experiments such as naïve Bayes, K-nn, PCA, etc. Their

results clearly show that unsupervised learning couldn’t perform well in

the case of prediction purposes.

 In this research, the classifier SVM is chosen because of its

success in classifying the most informative instances. SVM is the large

margin classifier which has made it a strong candidate for the instance

sampling strategies. SVMs can successfully be applied to solve prediction

problems to examine the likelihood (Cao, 2003; Tay & Cao, 2001).

Through experiments proved that the SVM outperformed when compared

to the BP neural network in terms of the normalized mean square error

(NMSE) and mean absolute error (MAE). (Mohandes, Halawani, Rehman,

& Hussain, 2004) found that based on the wind speed data, the hourly

speed of the wind can be better predicted with the SVM and the

Backpropagation model, (Mohandes et al., 2004) investigated the DNA

repair pathways and based on the SNP data using the SVM classifier for

the prediction of the oral cancer risks. Their results showed that SVM

Outperformed both in terms of precision and measure when compared to

the other classifiers. Time series ARMA model built to detect the aging

and forecast the resource exhaustion times.

Methodology

This study proposed a model for software failure incident

classification using active learning and the SVM. Active learning is

performed on the dataset that reduced the dataset size and selected the

sample out of it which we used as the training set for the SVM classifier.

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 5 Volume 2 Issue 3, July-September 2021

The selected sample consists of the instances that were unique and

informative for training the classifier. Active learning is performed with

the clustering technique in this study. To feed the active learning process,

k-mean clustering is performed in our approach clustering. Data is first

clustered with k-mean clustering strategy, and the clusters representatives

were used for the labeling. These instances in the center of the clusters

were collected and were manually labeled. This labeled data was used as

the training set of the classifier SVM and classification is carried out on

this data. The training set obtained after the clustering seemed to be free

of any repetitive data and the instances carrying no valuable information.

Clustering here in this study was kept constant, and label propagation was

not performed given in figure 1 and 2.

The machine learning method used for active learning are many

including the SVM (Yousafzai et al., 2021). This method is the most

widely used method of machine learning, which has a strong theoretical

background. It showed significant performance in image retrieval, text

categorization, and handwritten digits recognition. SVM classifiers are

most well-suited for active learning due to their appropriate mathematical

properties. The goal of SVM is to discover a decision rule with great

simplification Capability through choosing some specific subset of dataset

called support vectors. In this strategy, an ideal isolating hyperplane is

built, mapping the information space nonlinearly into a higher dimensional

feature space. Support vector machine is given the labeled data consisting

of the two different classes, and then the classifier generates results for that

labeled data. The results of the labeled data can be generalized to the

unlabeled data.

Figure 1.Binary classification, SVM

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 6 Volume 2 Issue 3, July-September 2021

Figure 2. Binary classification, SVM

Kernel tricks make it possible to handle diverse data easily.

Support vector machines use the Kernal trick to maximize the distance

between the support vectors and hyperplane. Weight functions of the

SVMs are inspected to identify the features that significantly influence the

whole data set. Those features are then considered to have a significant

impact on the classification.

With the success of the SVMs the researchers moved a step ahead

and added the extension to the SVM classifier in the form of the capability

of solving the multiclass problems depicted in figure 3 and figure 4.

Multiclass is the term that means every instance is assigned, one class. In

other words, it can be said mutually exclusive. There are several different

ways proposed in the literature on how to perform multiclass classification

with the SVM. There are two basic ways: Treat the whole dataset as once

with all the classes or perform the binary classification on the chunks of

the data and then combine the outputs.

Figure 3.Multiclass classification, SVM

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 7 Volume 2 Issue 3, July-September 2021

Figure 4. Multiclass classification, SVM

Software packages for implementing the Support Vector

Machines are easily available and can be downloaded freely. This research

is prediction-oriented. Software package capable of implementing the both

with same success rate was not easy to choose so many of the software

packages were observed for prediction problems. Their capabilities,

accuracy, and speed were tested before choosing one of them. The

mentioned packages were evaluated:

Libsvm, Svmtorch, Sequential Minimal Optimization (SMO).

In this research the SVM package used for the classification is the

SMO due to its benefits over other packages such as SMO requires no

additional framework stockpiling by any means. In this way, extensive

SVM preparing issues can fit within the memory of a common PC or

workstation. Since no lattice calculations are utilized as a part of SMO, it

is less vulnerable to numerical accuracy issue.

Discussion

The proposed model showed 84% accuracy and classified most of

the instances correctly while just incorrectly classifying the two. The test

model figure 4.13 is the detailed accuracy measure of the model with

different terms such as f-measure, precision etc. Before discussing the

metric, some terms need to know, such as the True positive Rate, FP Rate,

Precision, Recall, F-Measure, MCC, ROC Area, and PRC Area.

True positive (TP)

Values, which are observed positive, and are predicted positive. In our

model the TP rate for “failed” level is “1.000” for status-ok “0.5”, for error

“1.00”, and for the warning its “0.833”.

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 8 Volume 2 Issue 3, July-September 2021

False positive (Fp)

Observed value is negative, but the prediction result is positive. In our case

its “0.08” for failure level, “0.111” for error level.

Precision

Precision is the measure of the correctly identified positive events divided

by the total predicted events. For failure, it is “0.5”, status-ok “1.000”, for

error the precision rate is “0.8”, and for warning its “1.00” given in figure

5.

 Precision = True Positive /True Positive +False Positive

Figure 5. Failure Precision (Plot under ROC)

Recall

Recall is the correctly forecasted positive values divided by all

observations. Recall, as mentioned, is the ratio of the true positive

observation and the total observation in our case the. For failure it is

“1.000”, status-ok “0.5”, for error the recall is “1.000”, and for warning its

“0.833”.

 Recall = True positive / True positive +False Negative

F-measure

This the average of both precision and recall. In our model for failure it is

“0.667”, status-ok “0.677”, for error the f-measure is “0.84”, and for

warning its “0.85” mentioned in figure 6 and table 1.

 F measure = 2(Recall x Precision) / (Recall x Precision)

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 9 Volume 2 Issue 3, July-September 2021

Table.1

Detailed Accuracy

Figure 6. Failure F-measure (Plot under ROC)

Confusion Matrix

The confusion matrix or the error matrix is the visualization of the

technique's performance or can say, the algorithm used. Rows contain the

predicted instances, and the columns represent the actual instances

mentioned in table 2.

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 10 Volume 2 Issue 3, July-September 2021

Table.2.

 Confusion Matrix

Conclusion

In general, every failure is essential regarding both security and

cost. Enhanced and improved maintenance schedules can be

acknowledged with forecasting techniques. Failures prediction helps in

predicting the maintenance times, which counteract both security richness

and diminish costs. This study proposed a model for predicting failures

using the machine learning methods clustering and the classification of the

selected instances through the support vector machine (SVM). SVM

calculation is capable of anticipating, yet it is not clear to decide the

parameter esteems that will yield an agreeable outcome. Then again, it is

difficult to model a function for the transformative calculations to be

utilized to determine that needs the blend of the considerable number of

conceivable outcomes. This research classified the failures of the software

to optimize the maintenance schedules. The study showed and anticipated

failures of complex software systems. Log documents are gathered of the

4 characteristics and 100 examples. Event-driven error log records are

displayed with grouping and SVM. The outcomes demonstrate the

predominant execution of active learning and the SVM. Expecting that all

figure failures can be maintained a strategic distance from our displaying

strategies may prompt a great change of framework accessibility. The

purposed show accomplishes the best execution with the most instructive

information.

Future work

This research is particularly focused on the use of the SVM to

classify the failure of software, and it might have left any question in the

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 11 Volume 2 Issue 3, July-September 2021

readers and researchers such as the preferred usage of the ML techniques

such as SVM and active learning.

Future work will incorporate research on the legality of our model

and its comparison with the other proposed models for the failure

classification. We have provided an overview of the previous approaches

for failure classification, but not in terms of the TP Rate, FP Rate,

Precision-Recall, F-Measure, MCC, ROC Area, and PRC Area. The future

study will provide an analytical evaluation of the machine learning

techniques for prediction purposes. The results of the different techniques

will be generated with the same set of data by using differently supervised

and unsupervised techniques and classifiers.

References

Anwar, K., Rahman, T., Zeb, A., Saeed, Y., Khan, M. A., Khan, I., . . .

Abdollahian, M. (2021). Improving the Convergence Period of

Adaptive Data Rate in a Long Range Wide Area Network for the

Internet of Things Devices. Energies, 14(18), 5614.

Baldoni, R., Lodi, G., Montanari, L., Mariotta, G., & Rizzuto, M. (2012).

Online black-box failure prediction for mission critical

distributed systems. Paper presented at the International

Conference on Computer Safety, Reliability, and Security.

Campbell, C., Cristianini, N., & Smola, A. (2000). Query learning with

large margin classifiers. Paper presented at the ICML.

Cao, L. (2003). Support vector machines experts for time series

forecasting. Neurocomputing, 51, 321-339.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D.

S., Ray, B. K., & Wong, M.-Y. (1992). Orthogonal defect

classification-a concept for in-process measurements. IEEE

Transactions on software Engineering, 18(11), 943-956.

Chu, T., LEHNER, J., MARTINEZ-GURIDI, G., & YUE, M. (2006). A

review of software-induced failure experience: Brookhaven

National Laboratory.

Dijkstra, E. W., Dijkstra, E. W., Dijkstra, E. W., & Dijkstra, E. W. (1976).

A discipline of programming (Vol. 613924118): prentice-hall

Englewood Cliffs.

Garg, S., Puliafito, A., Telek, M., & Trivedi, K. (1998). Analysis of

preventive maintenance in transactions based software systems.

IEEE transactions on Computers, 47(1), 96-107.

George Box, S. H. (2010). 25 Great Quotes for Software Testers. [Press

release]

Gray, J. (1990). A census of Tandem system availability between 1985

and 1990. IEEE Transactions on reliability, 39(4), 409-418.

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 12 Volume 2 Issue 3, July-September 2021

Guerra, L., McGarry, L. M., Robles, V., Bielza, C., Larrañaga, P., & Yuste,

R. (2011). Comparison between supervised and unsupervised

classifications of neuronal cell types: a case study. Developmental

neurobiology, 71(1), 71-82.

Hoffmann, G. A., Salfner, F., & Malek, M. (2011). Advanced failure

prediction in complex software systems: Humboldt-Universität zu

Berlin, Mathematisch-Naturwissenschaftliche Fakultät ….

Khan, I., Ali, S., & Khusro, S. (2019). Smartphone-based lifelogging: An

investigation of data volume generation strength of smartphone

sensors. Paper presented at the International Conference on

Simulation Tools and Techniques.

Khan, I., Khusro, S., Ali, S., & Din, A. U. (2016). Daily Life Activities on

Smartphones and Their Effect on Battery Life for Better Personal

Information Management: Smartphones and Their Effect on

Battery Life for Better Personal Information Management.

Proceedings of the Pakistan Academy of Sciences: A. Physical

and Computational Sciences, 53(1), 61–74-61–74.

Kumaresh, S., & Ramachandran, B. (2012). Defect prevention based on 5

dimensions of defect origin. International Journal of Software

Engineering & Applications (IJSEA), 3(4).

Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training

text classifiers. Paper presented at the SIGIR’94.

Li, Y., & Lan, Z. (2006). Exploit failure prediction for adaptive fault-

tolerance in cluster computing. Paper presented at the Sixth IEEE

International Symposium on Cluster Computing and the Grid

(CCGRID'06).

Lu, H., & Cukic, B. (2012). An adaptive approach with active learning in

software fault prediction. Paper presented at the Proceedings of

the 8th International Conference on Predictive Models in Software

Engineering.

Mann, C. C. (2002). Why software is so bad. Technology Review, 105(6),

33-38.

Meneely, A., & Williams, O. (2012). Interactive churn metrics: socio-

technical variants of code churn. ACM SIGSOFT Software

Engineering Notes, 37(6), 1-6.

Mohandes, M. A., Halawani, T. O., Rehman, S., & Hussain, A. A. (2004).

Support vector machines for wind speed prediction. Renewable

energy, 29(6), 939-947.

Ogheneovo, E. E. (2014). Software dysfunction: Why do software fail?

Journal of Computer and Communications, 2014.

Classification of Software Failure Incidents Islam, Inayat, Taj, Abid

The Sciencetech 13 Volume 2 Issue 3, July-September 2021

Salfner, F., Lenk, M., & Malek, M. (2010). A survey of online failure

prediction methods. ACM Computing Surveys (CSUR), 42(3), 1-

42.

Salfner, F., & Tschirpke, S. (2008). Error Log Processing for Accurate

Failure Prediction. Paper presented at the WASL.

Tay, F. E., & Cao, L. (2001). Application of support vector machines in

financial time series forecasting. omega, 29(4), 309-317.

Tong, S., & Koller, D. (2001). Support vector machine active learning with

applications to text classification. Journal of machine learning

research, 2(Nov), 45-66.

Xu, Z., Yu, K., Tresp, V., Xu, X., & Wang, J. (2003). Representative

sampling for text classification using support vector machines.

Paper presented at the European conference on information

retrieval.

Yousafzai, B. K., Afzal, S., Rahman, T., Khan, I., Ullah, I., Ur Rehman,

A., . . . Cheikhrouhou, O. (2021). Student-Performulator: Student

Academic Performance Using Hybrid Deep Neural Network.

Sustainability, 13(17), 9775.

