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Abstract 

This work studies the fractional flow of two infinite coaxial cylinders over 

Odroyd-B fluids. The fluid motion is produced by the combined effect of the inner 

cylinder's rotational motion and a time-dependent oscillating pressure gradient. 

The Caputo fractional operator, Laplace transforms, and the finite Hankel 

transform are used to produce the semi-analytical solution for flow velocity and 

shear stress. Furthermore, the results indicate that the flow depends on time, the 

fractional parameter, and the non-Newtonian parameter. 

Keywords: Fractionalized Oldroyd-B Fluid; Integral Transforms; Caputo 

Operator; Oscillating Pressure Gradient. 

Introduction 

Fractional differential equations are considered to be the most 

effective means of describing physical and technical processes, which 

have been modelled using fractional calculus. It is important to remember 

that conventional mathematical models, particularly nonlinear models, of 

integer-order derivatives often fail to give appropriate results. Recent 

advances in a variety of disciplines, including biology, chemistry, control 

theory, signal and image processing, mechanics, electricity, and 

economics, have made fractional calculus extremely essential (Miller & 

Ross, 1993). Given these non-Newtonian fluids' non-linear behavior, 

researchers use various analytical and numerical techniques. Solving these 

kinds of flow issues has greatly advanced with fractional calculus. In the 

beginning, fractional calculus was used to solve time-dependent, viscous-

diffusion fluid mechanics systems. Nevertheless, its application to non-

linear flow problems has grown since it can provide memory data 

descriptions in addition to precise, semi-analytical results similar to those 

obtained with classical methods. The time-fractional Caputo derivative is 

used in research to study semi-analytical solutions for the time-dependent 

1-dimensional flow of Generalized Maxwell fluids in channels (Rauf et 
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al.,  2020). Detailed analysis on the time-dependence of viscous Maxwell 

fluid motion over wavering cylinders of the same axis with fixed outer 

cylinder using an integral transformation, was also performed by 

(Khalique et al., 2019).  

Unsteady flow of Oldroyd-B fluid between two cylinders are 

diversely used in various engineering and scientific fields. For instance, in 

high-performance machinery, the lubrication of moving parts often 

involves non-Newtonian fluids. The rotating inner cylinder model helps in 

designing and improving lubricants for better performance and longevity 

of mechanical components. Also, such flow fluids in cylindrical 

geometries are applicable in polymer processing, oil and gas industry, 

chemical engineering and many other. Shaikh et al. (2022) uses fractional 

Caputo derivation to examine the behaviour of fractional Oldroyd B fluid 

between oscillating cylinders. In diverging from its applications in fluid 

dynamics, fractional calculus has found diverse utility across various 

disciplines. The Caputo fractional derivative is significant because it 

allows for the accurate modelling of systems with memory effects and 

non-local behaviours in mathematics and physics, while also 

accommodating non-zero initial conditions and being applicable to 

boundary value problems. Qureshi & Yusuf (2019) explores the 

fractionalization of the blood ethanol concentration model using various 

fractional operators, showcasing improved estimation compared to the 

integer-order model in certain cases. The authors investigate measles 

transmission dynamics using a novel epidemiological model incorporating 

both integer and fractional order operators. An investigation on the 

unsteady flow of flowing down the flow in the cylindrical tank has been 

taken using the analytical technique (Khaskheli et al., 2020). Tanveer et 

al. (2017) use the Fox H-function to analyze the magneto-hydrodynamic 

flow of a generalized Oldroyd-B fluid across an infinite oscillating plate 

with slip condition. A new fractional model is proposed by Qureshi et al. 

(2019) evaluates the effects of deforestation on wildlife. The study proves 

the existence and uniqueness of solutions, presents numerical simulations 

and comparative analysis, and highlights the model's insightful findings, 

surpassing previous studies.  (Afaque et al., 2023) inquired the location of 

the inhibitor impacted the oscillation of pressure within a solid fuel 

combustion chamber. 

Numerical approaches have been used to investigate the behaviour 

of mixing fluid flows in the chamber (Khokhar et al., 2024). It introduces 

a new system with stability analysis and computes the basic reproduction 

number using fractional conformable derivatives. Afaque et al. (2023) 

examined the flow of an incompressible fluid with variable viscosity and 

finite conductivity across an infinite plane when heat transfer and a 
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magnetic field were present. For the vorticity distribution proportional to 

an oscillating stream, general solutions were obtained. In this study, we 

chose to use Caputo fractional derivatives in deriving analytical results for 

velocity profile and shear stress distribution in the presence of oscillating 

pressure gradients of an oscillating cylinder of the same axis containing 

Oldroyd B liquid.  

Theorizing the Problem 

An Oldroyd B fluid between two infinite circular cylinders of 

radius R1 and R2 (R2 > R1) is considered (see Figure 1). In this theoretical 

study, the cylinders are in a resting position at t = 0. At time t = 0+, when 

the transient pressure gradient is employed in the azimuthal direction, the 

inner cylinder is abruptly moved whereas the outer remains stationary. In 

this speculative position, consider the coordinates of the cylinder are (r, θ, 

z), taking the r-axes perpendicular and z-axis laterally with the axis of the 

cylinder simultaneously.  

 
Figure 1: Problem geometry (Shaikh K, et al., 2022) 

 

The conservation equation that governs the flow is described by, 

𝛻 ∙ �̅� = 0,   𝜌
𝐷�̅�

𝐷𝑡
= 𝛻 ∙ �̅�,   �̅� = 𝑝𝐼 ̅ + 𝑆̅                       (1) 

Here velocity vector is symbolised by V, p defines pressure, and ρ, the 

constant density, whereas T signifies the Cauchy stress tensor. The 

constitutive equation apropos the flow of Oldroyd-B fluid gains attention 

in (Oldroyd & James, 1950): 

𝑆̅ + 𝜆 [
𝜕𝑆̅

𝜕𝑡
+ (�̅� ∙ 𝛻)𝑆̅ − �̅�𝑆̅ − 𝑆̅�̅�𝑇]

= 𝜇 {�̅� + 𝜆𝑟 [
𝜕�̅�

𝜕𝑡
+ (�̅� ∙ 𝛻)�̅� − �̅��̅� − �̅��̅�𝑇]}                    (2) 

In this case, L is the velocity gradient (s-1), S signifies the extra stress 

tensor (N/m2), μ refers to dynamic viscosity (Ns/m2), whereas λ implies 

the relaxation parameter, λr (0 ≤ λr < λ) symbolizes the retardation 

parameter, finally, the first Rivilan Erikson tensor is 𝛾 = ∇𝑉 + (∇𝑉)𝑇.  

On presenting the fractional derivative, Equation 2 appears in the 

form: 

𝑆̅ + 𝜆[𝐷𝑡
𝛼𝑆̅ + (�̅� ∙ 𝛻)𝑆̅ − �̅�𝑆̅ − 𝑆̅�̅�𝑇]

= 𝜇{�̅� + 𝜆𝑟[𝐷𝑡
𝛼�̅� + (�̅� ∙ 𝛻)�̅� − �̅��̅� − �̅��̅�𝑇]}                   (3) 
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Where Dt
α is the Caputo fractional operator defined as: 

𝐷𝑡
𝛼ℎ(𝑡) =

{
 
 

 
 1

𝛤(1 − 𝛼)
∫

ℎ′(𝑥)

(𝑡 − 𝑥)𝛼
𝑑𝑥    0 < 𝛼 < 1;

𝑡

0

𝑑ℎ(𝑡)

𝑑𝑡
                               𝛼 = 1,

             (4) 

Since the flow is unsteady and moving in the circular cylinder, therefore 

the velocity field and extra stress S are functions of r and t, 

V̅ = v(r, t)eθ ,    S̅ = S(r, t)                                  (5) 
Since both the geometry and fluid are primarily at rest, the value of time 

is zero, therefore, 

�̅�(𝑟, 0) = 0 𝑎𝑛𝑑 𝑆̅(𝑟, 0) = 0                                 (6) 
Plugging Equation (3) in Equation (1), we obtain, 

𝜌(1 + 𝜆𝐷𝑡
𝛼)𝜏(𝑟, 𝑡) = 𝜇(1 + 𝜆𝑟𝐷𝑡

𝛼) (
𝜕

𝜕𝑟
−
1

𝑟
)𝑣(𝑟, 𝑡)            (7) 

𝜌(1 + 𝜆𝐷𝑡
𝛼)
𝜕𝑣(𝑟, 𝑡)

𝜕𝑥
+
1

𝑟
(1 + 𝜆𝐷𝑡

𝛼)
𝜕𝑃

𝜕𝜃

= 𝜇(1 + 𝜆𝑟𝐷𝑡
𝛿)(

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−
1

𝑟2
)𝑣(𝑟, 𝑡)                   (8) 

Where Srr = Szz = Srz = Sθz = Sθθ = 0, The nonzero shear stress is defined 

as τ(r, t) = Srθ (r, t), and the kinematic viscosity as υ = μ/ρ. In this study, 

we adopt time t > 0, ∂P/∂θ = −ρP0 cos(ωt) where P0 is a constant, so 

Equation (8) takes the form, 

(1 + 𝜆𝐷𝑡
𝛼)
𝜕𝑣(𝑟, 𝑡)

𝜕𝑥
−
𝑃0
𝑟
(1 + 𝜆𝐷𝑡

𝛼) cos(𝜔𝑡)

= 𝜐(1 + 𝜆𝑟𝐷𝑡
𝛿)(

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−
1

𝑟2
)𝑣(𝑟, 𝑡)                   (9) 

The fractional parameters are identified as α and 𝛿 in such a way 

that 0 ≤ α ≤ 𝛿 ≤ 1 is achieved. As a result, the boundary and initial 

conditions are as follows: 

𝑣(𝑟, 0) =
𝜕𝑣(𝑟, 0)

𝜕𝑡
= 0,         𝑟 ∈ [𝑅1, 𝑅2]                     (10) 

𝑣(𝑅1, 𝑡) = fe
at     𝑎𝑛𝑑        𝑣(𝑅2, 𝑡) = 0,    𝑟 > 0              (11) 

Where f is a constant. 

Computation of the Velocity Profile 

Applying the Laplace transform illustrated by Debnath & 

Lokenath (2016) in Equation (9) and results in: 

(𝑠 + 𝜆𝑠𝛼+1)�̅�(𝑟, 𝑠) − 
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𝑃0
𝑟
(

𝜔

𝑠2 +𝜔2
+ 𝜆𝑠𝛼 (

𝑠 sin (
𝜋

2
𝛼) + 𝜔 𝑐𝑜𝑠 (

π

2
 α)

𝑠2 +𝜔2
)) = 

𝜐(1 + 𝜆𝑟𝑠
𝛿) (

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−
1

𝑟2
) �̅�(𝑟, 𝑠)                     (12) 

Since 

(𝑠 + 𝜆𝑠𝛼+1)�̅�(𝑟, 𝑠) 

−
𝑃0
𝑟
[(1 + 𝜆𝜔𝛼 cos (

𝜋

2
𝛼))

𝜔

𝑠2 +𝜔2
+ 𝜆𝜔𝛼 sin (

𝜋

2
𝛼)

𝑠

𝑠2 +𝜔2
] 

= 𝜐(1 + 𝜆𝑟𝑠
𝛿) (

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−
1

𝑟2
) �̅�(𝑟, 𝑠)                 (13) 

The finite Hankel transform is as follows: 

ℋ𝑛{𝑓(𝑟)} = 𝑓(𝑘𝛾) = ∫ 𝑟𝑓(𝑟)𝐴𝑛(𝑟𝑘𝛾)𝑑𝑟        𝑅2 > 𝑅1

𝑅2

𝑅1

       14) 

Where  𝐴𝑛(𝑟𝑘𝛾) = 𝐽𝑛(𝑟𝑘𝛾)𝑌𝑛(𝑅1𝑘𝛾) − 𝑌𝑛(𝑟𝑘𝛾)𝐽𝑛(𝑅1𝑘𝛾). 𝑘𝛾, stands for 

the positive roots of 𝐴𝑛(𝑟𝑘𝛾) = 0, where 𝐽𝑛(. ) and 𝑌𝑛(. ), stand for the 

first order and second order n Bessel functions, separately. At this instant, 

multiply Equation (13) by 𝑟𝐴𝑛(𝑟𝑘𝛾) and integrating from 𝑅1 to 𝑅2 

concerning 𝑟 using the identity: 

∫ 𝑟 (
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−
1

𝑟2
) �̅�(𝑟, 𝑠)

𝑅2

𝑅1

𝐴1(𝑟𝑘𝛾)𝑑𝑟 = 

−
2

𝜋

𝑓

𝑠 − 𝑎

𝐽1(𝑅2𝑘𝛾)

𝐽1(𝑅1𝑘𝛾)
− 𝑘𝛾

2�̅�𝐻(𝑘𝛾, 𝑠)                            (15) 

Finally, we arrive at: 

�̅�𝐻 = 𝑃0 (1 + 𝜆𝜔
𝛼 cos (

𝜋

2
𝛼))

𝑠

(𝑠2 +𝜔2)(𝑠 + 𝜆𝑠𝛼+1 + 𝜐𝑘𝛾
2)

 

×
𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)

𝑘𝛾
 

−𝑃0𝜆𝜔
𝛼 sin (

𝜋

2
𝛼)

𝜔

(𝑠2 +𝜔2)(𝑠 + 𝜆𝑠𝛼+1 + 𝜐𝑘𝛾
2)

 

×
𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)

𝑘𝛾
−
2

𝜋

𝑓

𝑠 − 𝑎

𝐽1(𝑅2𝑘𝛾)

𝐽1(𝑅1𝑘𝛾)
 

×
𝜐(1 + 𝜆𝑟𝑠

𝛿)

𝑠 + 𝜆𝑠𝛼+1 + 𝜐𝑘𝛾
2                                     (16) 

In which 𝐴1̅̅ ̅(𝑟𝑘𝛾) = 𝐽0(𝑟𝑘𝛾)𝑌1(𝑅2𝑘𝛾) − 𝐽1(𝑅2𝑘𝛾)𝑌0(𝑟𝑘𝛾). As described 

by (Fang & Liu., 2020) in Y0 (rkγ). The following is an appropriate way to 

write the Equation (16): 
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�̅�𝐻 = 𝑃0 (1 + 𝜆𝜔
𝛼 cos (

𝜋

2
𝛼))

𝜔

(𝑠2 +𝜔2)(𝑠 + 𝜆𝑠𝛼+1 + 𝜐𝑘𝛾
2)

 

×
𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)

𝑘𝛾
 

−𝑃0𝜆𝜔
𝛼 sin (

𝜋

2
𝛼)

𝑠

(𝑠2 +𝜔2)(𝑠 + 𝜆𝑠𝛼+1 + 𝜐𝑘𝛾
2)

 

×
𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)

𝑘𝛾
−

2

𝜋𝑘𝛾
2

𝑓

𝑠 − 𝑎

𝐽1(𝑅2𝑘𝛾)

𝐽1(𝑅1𝑘𝛾)
 

−
2𝑓

𝜋𝑘𝛾
2

𝐽1(𝑅2𝑘𝛾)

𝐽1(𝑅1𝑘𝛾)

𝜆𝑟𝑠
𝛿 − (𝑠 + 𝜆𝑠𝛼+1)

(𝑠 − 𝑎)(𝑠 + 𝜆𝑠𝛼+1 + 𝜐𝑘𝛾
2)
                (17) 

The inverse Hankel transform is as follows: 

�̅�(𝑟, 𝑠) =
𝜋2

2
∑

𝑘𝛾
2𝐽1

2(𝑅1𝑘𝛾)𝐴1(𝑟𝑘𝛾)

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

�̅�𝐻(𝑘𝛾 , 𝑠)            (18) 

Applying Inverse Hankel transform on Equation (17) using Equation (18) 

and the well-known result, we find that, 
𝑠

(𝑠2 +𝜔2)(𝑠 + 𝜆𝑠𝛼+1 + 𝜐𝑘𝛾
2)

 

= −
𝑠

(𝑠2 +𝜔2)

1

𝜆
∑(−

1

𝜆
)
𝑖+1 𝑠𝑖

(𝑠𝛼+1 + 𝜐𝑘𝛾
2𝜆−1)

𝑖+1

∞

𝑖=0

            19) 

The equation obtained is: 

�̅�(𝑟, 𝑠) =
𝑅1(𝑅2

2 − 𝑟2)

(𝑅2
2 − 𝑅1

2)𝑟

𝑓

𝑠 − 𝑎
+
𝜋2𝑃0
2

(1 + 𝜆𝜔𝛼 cos (
𝜋

2
𝛼)) × 

∑
𝑘𝛾𝐽1

2(𝑅1𝑘𝛾)𝐴1(𝑟𝑘𝛾)[𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

𝜔

(𝑠2 +𝜔2)(𝑠 + 𝜆𝑠𝛼+1 + 𝑘𝛾
2)
+ 

𝜋2𝑃0
2

𝜆𝜔𝛼 sin (
𝜋

2
𝛼)∑

𝑘𝛾𝐽1
2(𝑅1𝑘𝛾)𝐴1(𝑟𝑘𝛾)[𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)
× 

∞

𝛾=1

 

−𝜋𝑓∑
𝐽1(𝑅1𝑘𝛾)𝐽1(𝑅2𝑘𝛾)𝐴1(𝑟𝑘𝛾)

𝐽1
2(𝑅1𝑘𝛾)−𝐽1

2(𝑅2𝑘𝛾)
∞
𝛾=1

𝜆𝑟𝑠
𝛿

(𝑠−𝑎)(𝑠+𝜆𝑠𝛼+1+𝑘𝛾
2)

             

+𝜋𝑓∑
𝐽1(𝑅1𝑘𝛾)𝐽1(𝑅2𝑘𝛾)𝐴1(𝑟𝑘𝛾)

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

(𝑠 + 𝜆𝑠𝛼+1)

(𝑠 − 𝑎)(𝑠 + 𝜆𝑠𝛼+1 + 𝑘𝛾
2)

∞

𝛾=1

  (20) 

In the end, using the convolution theorem and the function 𝐺𝑙,𝑚,𝑛(𝑐, 𝑡) 
(Lorenzo & Carl, 2008), when the discrete inverse Laplace transform is 

applied to (20) the velocity field is demonstrated as follows: 

𝑣 =
𝑅1(𝑅2

2 − 𝑟2)𝑓

(𝑅2
2 − 𝑅1

2)𝑟
𝑒𝑎𝑡 − 
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𝜋2𝑃0
2

(1 + 𝜆𝜔𝛼 cos (
𝜋

2
𝛼))∑

𝑘𝛾𝐽1
2(𝑅1𝑘𝛾)𝐴1(𝑟𝑘𝛾)[𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

× 

∑(−
1

𝜆
)
𝑖+1∞

𝑖=0

∫ sin[𝛽 (𝑡 − 𝜏)]
𝑡

0

[𝐺𝛼+1,𝑖,𝑖+1(−𝜐𝑘𝛾
2𝜆−1, 𝜏)]𝑑𝜏 − 

𝜋2𝑃0
2

𝜆𝜔𝛼 sin (
𝜋

2
𝛼)∑

𝑘𝛾𝐽1
2(𝑅1𝑘𝛾)𝐴1(𝑟𝑘𝛾)[𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

× 

∑(−
1

𝜆
)
𝑖+1∞

𝑖=0

∫ cos [𝛽 (𝑡 − 𝜏)]
𝑡

0

[𝐺𝛼+1,𝑖,𝑖+1(−𝜐𝑘𝛾
2𝜆−1, 𝜏)]𝑑𝜏 + 

𝜋𝑓∑
𝐽1(𝑅1𝑘𝛾)𝐽1(𝑅2𝑘𝛾)𝐴1(𝑟𝑘𝛾)

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

∑(−
1

𝜆
)
𝑖+1∞

𝑖=0

𝜆𝑟∫ 𝑒𝑎(𝑡−𝜏)
𝑡

0

[𝐺𝛼+1,𝑖+𝛿,𝑖+1(−𝜐𝑘𝛾
2𝜆−1, 𝜏)]𝑑𝜏 − 

𝜋𝑓 ∑
𝐽1(𝑅1𝑘𝛾)𝐽1(𝑅2𝑘𝛾)𝐴1(𝑟𝑘𝛾)

𝐽1
2(𝑅1𝑘𝛾)−𝐽1

2(𝑅2𝑘𝛾)
∑ (−

𝜐𝑘𝛾
2

𝜆
)
𝑖+1

∞
𝑖=0 ∫ 𝑒𝑎(𝑡−𝜏)

𝑡

0
[𝐺𝛼,−𝑖,𝑖(−𝜆

−1, 𝜏)]𝑑𝜏∞
𝛾=1    21) 

Where 𝐺𝑙,𝑚,𝑛(𝑐, 𝑡) = ∑
(𝑛)𝑗𝑐

𝑗𝑡−(𝑛+𝑗)𝑚−l+1

𝑗!𝛤(𝑛+𝑗)𝑙−𝑚
∞
𝑗=0  is the generalized G function. 

(n)j represents the Pochhammer polynomial, and the velocity 

manifestation given in Equation (21) remains the same as the solutions 

proposed in Liancun et al. (2011), if the outer cylinder is assumed to be 

fixed however the inner cylinder is moving. 

Computation of the Shear Stress 

Using the Laplace transform on Equation (7), one can obtain, 

�̅�(𝑟, 𝑠) =
𝜇(1 + 𝜆𝑟𝑠

𝛿)

(1 + 𝜆𝑠𝛼)
(
𝜕

𝜕𝑟
−
1

𝑟
) �̅�(𝑟, 𝑠)                (22) 

Equation (22), which uses Equation (21) achieved: 

�̅�(𝑟, 𝑠) =
𝜇(1 + 𝜆𝑟𝑠

𝛿)

(1 + 𝜆𝑠𝛼)

2𝑅1𝑅2

(𝑅2
2 − 𝑅1

2)𝑟2
(
𝑅1𝜔2𝛽2

𝑠2 + 𝛽2
2 −

𝑅2𝜔1𝛽1

𝑠2 + 𝛽1
2) + 

𝜇𝜋∑
𝐽1
2(𝑅1𝑘𝛾)[

2

𝑟
𝐴1(𝑟𝑘𝛾) − 𝑘𝛾𝐴1̅̅ ̅(𝑟𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

[

𝜔2𝛽2

𝑠2 + 𝛽2
2 −  ] 

[ 𝜔1𝛽1

𝑠2 + 𝛽1
2

𝐽1(𝑅2𝑘𝛾)

𝐽1(𝑅1𝑘𝛾)

]
𝑠(1 + 𝜆𝑟𝑠

𝛿)

𝜐𝑘𝛾
2 + 𝜐𝑘𝛾

2𝜆𝑟𝑠
𝛿 + 𝑠 + 𝜆𝑠𝛼+1

+ 

𝜇𝜋

2
∑

𝑘𝛾𝐽1
2(𝑅1𝑘𝛾)[

2

𝑟
𝐴1(𝑟𝑘𝛾) − 𝑘𝛾𝐴1̅̅ ̅(𝑟𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

𝜌𝑃0𝜔[𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)]

(𝑠2 + 𝜔2)
× 

(1 + 𝜆𝑟𝑠
𝛿)

𝜐𝑘𝛾
2 + 𝜐𝑘𝛾

2𝜆𝑟𝑠
𝛿 + 𝑠 + 𝜆𝑠𝛼+1

                         (23) 
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Like this, the equation described below is obtained with the help of the 

generalized 𝑅 function. 

𝜏(𝑟, 𝑡) =
2𝜇𝑅1𝑅2

𝜆(𝑅2
2 − 𝑅1

2)𝑟2
∫ [𝑅1𝜔2𝑠𝑖𝑛 𝛽2(𝑡 − 𝜏) −
𝑡

0

 

𝑅2𝜔1 𝑠𝑖𝑛 𝛽1(𝑡 − 𝜏)][𝑅𝛼,0(−𝜆
−1, 𝑡) + 𝜆𝑟𝑅𝛼,𝛿(−𝜆

−1, 𝑡)]𝑑𝜏 + 

𝜇𝜋

𝜆
∑

𝐽1
2(𝑅1𝑘𝛾)[

2

𝑟
𝐴1(𝑟𝑘𝛾) − 𝑘𝛾𝐴1̅̅ ̅(𝑟𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

× 

∑∑
𝑖!

𝑞! (𝑖 − 𝑞)!

𝑖

𝑞=0

∞

𝑖=0

(
𝜐𝑘𝛾

2

𝜆
)

𝑖

× 𝜆𝑟
𝑞∫ [𝜔2

𝑡

0

𝑠𝑖𝑛 𝛽2 (𝑡 − 𝜏) − 

𝜔1𝑠𝑖𝑛 𝛽1 (𝑡 −  𝜏)
𝐽1(𝑅2𝑘𝛾)

𝐽1(𝑅1𝑘𝛾)
][𝐺𝛼,𝛿𝑞−𝑖,1+𝑖(𝜏, −𝜆

−1) +    𝜆𝑟𝐺𝛼,𝛿𝑞+𝛿−𝑖,1+𝑖(𝜏, −𝜆
−1)]𝑑𝜏

−
𝜇𝜋

2𝜆
∑

𝐽1
2(𝑅1𝑘𝛾) [

2

𝑟
𝐴1(𝑟𝑘𝛾) − 𝑘𝛾𝐴1̅̅ ̅(𝑟𝑘𝛾)]

𝐽1
2(𝑅1𝑘𝛾) − 𝐽1

2(𝑅2𝑘𝛾)

∞

𝛾=1

× 

∑(∑
𝑖!

𝑞! (𝑖 − 𝑞)!

𝑖

𝑞=0

∞

𝑖=0

(
𝜐𝑘𝛾

2

𝜆
)

𝑖

) × 𝜆𝑟
𝑞𝑘𝛾𝑃0 [𝐴1̅̅ ̅(𝑅1𝑘𝛾) − 𝐴1̅̅ ̅(𝑅2𝑘𝛾)] 

∫ 𝑠𝑖𝑛𝜔(𝑡 − 𝜏)
𝑡

0

[𝐺𝛼,𝛿𝑞−𝑖−1,𝑖+1(𝜏, −𝜆
−1)

+ 𝜆𝑟𝐺𝛼,𝛿𝑞+𝛿−𝑖−1,𝑖+1(𝜏, −𝜆
−1)]𝑑𝜏                                (24) 

𝑊ℎ𝑒𝑟𝑒    𝑅𝑙,𝑚(𝑑, 𝑡) = ∑
𝑑𝑗𝑡(𝑗+1)𝑚−𝑙−1

𝛤[(𝑗+1)𝑙−𝑚]
∞
𝑗=0 . 

The shear stress Equation (24) agrees with the findings (Liancun et al., 

2011). 

Analysis of Results and Discussion 

Using the Caputo fractional operator and integral transform, this 

paper examined the velocity profile and shear stress for the fractionalized 

Oldroyd-B fluid flow in a rotating cylinder utilizing an oscillating pressure 

gradient. By applying finite Hankel and Laplace transforms to the 

successive fractional derivatives, the velocity field and the appropriate 

shear stress are found. The results are given in the provision of the 

generalized G and Mittag-Leffler functions using integral and series 

forms. For the different cases, while α → 1 for the Oldroyd B fluid and α 

→ 1 and λr → 0, we acquire the equivalent solution of a classical 

Newtonian fluid. In Equations (21) and (24) respectively, the effects of 

influential factors on the fluid's velocity and shear stress are defined. SI 

units are utilised for all numbers and the roots are predictable by 𝑘𝛾 =
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(2r−1)𝜋

𝑅2−𝑅1
. Graphical representations of the velocity field v(r,t) and shear 

stress (r,t) were created alongside r for a range of t values and important 

factors to show how the findings physically manifested. For the 

computation and graphical results, Mathematica 7 is utilized. 

The time effect on the fluid velocity is epitomized in Figure 2, in 

contrast to regular Oldroyd B fluid and fractionalized Oldroyd B fluid, 

when r gets near R1, the velocity declines as a function of t. In addition, 

Fractionalized Oldroyd B fluid exhibits a larger fluctuation amplitude. As 

we can see in Figure 3, at larger values of α, there is a decrease in velocity 

and a smaller fluctuation. 
 

 
Figure 2: Velocity profiles for different values of time (𝑹𝟏 = 𝟎. 𝟓, 𝑹𝟐 = 𝟏,

𝝎 = 𝟎. 𝟏, 𝝀 = 𝟏𝟎, 𝝀𝒓 = 𝟐, 𝝊 = 𝟎. 𝟐, 𝒂 = −𝟎. 𝟐, 𝒇 = 𝟒, 𝑷𝟎 = 𝟐). 

 

A visual representation of the relaxation parameter λ is shown in 

Figure 4. It demonstrates that as the magnitude of λ increases the 

variations between two circular cylinders get larger and larger. This may 

be caused by viscous forces becoming less potent as λ values rise, in 
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contrast to Figure 5, which shows the reverse pattern for the retardation 

parameter λr. Figure 6 illustrates the association between kinematic 

viscosity and velocity, showing that as fluid kinematic viscosity 

increases, decreases velocity. Because an increase in viscosity provides 

resistance to fluid flow, which lowers the fluid's velocity, this relationship 

physically confirms our findings. The limiting cases for the material 

constant λr for the conventional Oldroyd-B fluid (α → 1 or α → 1 and λr 

→ 0) are depicted in Figure 7. For the various values of the radial distance 

r, the time series of the velocity profiles are displayed in Figure 8. We can 

see that the velocity increases and drops simultaneously, reaching its 

maximum in the radius range of 0.65–0.75. The fluctuating velocity in this 

profile is caused by the oscillating pressure gradient. The fluctuations 

increase from 0.6 to 0.7 and reach 0.95; nevertheless, the velocity profiles 

fluctuate less for both the ordinary and fractionalized Oldroyd-B fluids. 

As α decreases from 1 to 0, the oscillation period is longer. 

 

 

 
Figure 3: Velocity profile for different values of the fractional parameter α 

(𝑹𝟏 = 𝟎. 𝟓, 𝑹𝟐 = 𝟏, 𝒕 = 𝟒,𝝎 = 𝟎. 𝟏, 𝝀 = 𝟏𝟎, 𝝀𝒓 = 𝟐,𝒂 = −𝟎. 𝟐, 𝒇 = 𝟒, 𝑷𝟎 =
𝟐. 
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Figure 4: Velocity profile for different values of λ (𝜶 = 𝟎. 𝟓, 𝒕 = 𝟒, 𝑹𝟏 =
𝟎. 𝟓, 𝑹𝟐 = 𝟏,𝝎 = 𝟎. 𝟏, 𝝀𝒓 = 𝟐, 𝝊 = 𝟎. 𝟐, 𝒂 = −𝟎. 𝟐, 𝒇 = 𝟒, 𝑷𝟎 = 𝟐). 

 

 
Figure 5: Velocity profile for different values of λr (𝜶 = 𝟎. 𝟓, 𝒕 = 𝟒, 𝑹𝟏 =

𝟎. 𝟓, 𝑹𝟐 = 𝟏,𝝎 = 𝟎. 𝟏, 𝝀 = 𝟐, 𝝊 = 𝟎. 𝟐, 𝒂 = −𝟎. 𝟐, 𝒇 = 𝟒, 𝑷𝟎 = 𝟐). 
 

 
Figure 6: Velocity profile for different values of kinematic viscosity 

(𝝀 = 𝟏𝟐𝟎, 𝜶 = 𝟎. 𝟓, 𝒕 = 𝟒, 𝑹𝟏 = 𝟎. 𝟓, 𝑹𝟐 = 𝟏,𝝎 = 𝟎. 𝟏, 𝝀𝒓 = 𝟐,𝒂 = −𝟎. 𝟐, 𝒇 =
𝟒, 𝑷𝟎 = 𝟐). 
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Figure 7: Velocity profile for different values of t (𝑹𝟏 = 𝟎. 𝟓, 𝑹𝟐 = 𝟏,𝝎 =

𝟎. 𝟏, 𝝀 = 𝟐, 𝝊 = 𝟎. 𝟐, 𝒂 = −𝟎. 𝟐, 𝑷𝟎 = 𝟐). 
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Figure 8: Velocity profile for different values of (𝝀 = 𝟏𝟓,𝑹𝟏 =

𝟎. 𝟓, 𝑹𝟐 = 𝟏,𝝎 = 𝟎. 𝟏, 𝝀𝒓 = 𝟐, 𝝊 = 𝟎. 𝟎𝟑, 𝒂 = −𝟎. 𝟐, 𝒇 = 𝟏𝟓, 𝑷𝟎 = 𝟏𝟎. 

Conclusion 

The goal of this work is to study the Oldroyd-B fluid flow between 

coaxial cylinders that are moving as a result of a pressure gradient that 

varies over time. The classical model is then generalized using the Caputo 

fractional derivative, which has recently become the most widely used 

fractional derivative. Analytical solutions are then obtained by applying 

the Laplace and Hankel transform techniques. The graphs also display the 

gathered results. The main results obtained are given as follows. 

Variability in every profile are displayed for various values of α. This 

result illustrates the fluid's memory effect, which the integer order 

derivative is unable to convey. Velocity for the fractionalized Oldroyd-B 

fluid declines with increasing time. The amount of kinematic viscosity is 

inversely related to the rate of velocity. Both non-Newtonian parameters, 

𝜆 and 𝜆𝑟, have opposite effects on the motion of the fluid. With increasing 

relaxation parameter, dominant oscillations are seen. The current findings 
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can possibly be simplified to the classical Oldroyd-B, Maxwell fluid, and 

classical Newtonian fluid models by assuming that α → 1, λr→0. 

 

Nomenclature 

Ρ The Hydrostatic density(𝑘𝑔𝑚−3)  
𝑣 Velocity (𝑚𝑠−1) 
𝐒 Extra stress tensor(𝑁𝑚−2) 
𝜏 Shear stress(𝑁𝑚−2) 
P The pressure (𝑃𝑎) 
R1 The radius of the inner cylinder(𝑚) 
R2 The radius of the outer cylinder(𝑚) 
 𝜇 Dynamic viscosity(𝑘𝑔𝑚−2𝑠−2) 
𝜐 Kinematic viscosity(𝑚2𝑠−1) 
𝛼, 𝛿 Fractional parameters (𝑠) 
𝜆 Relaxation parameter (𝑠) 
λr Retardation parameter (𝑠) 

β2 Angular velocity of the inner cylinder(𝑟𝑎𝑑 𝑠−1) 
β2 Angular velocity of the outer cylinder(𝑟𝑎𝑑 𝑠−1) 
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