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Abstract 

This research study presents an analytical solution to the problem of slow 

axisymmetric squeeze stream formed by a slightly viscoelastic fluid film between 

two rounded disks due to slip effect. The study uses suited slip boundary 

conditions to derive the equations of motion as nonlinear systems of partial 

differential equation. Analytical solutions of ancient governing equations of 

action have been constructed by Langlois recursive method up to a third order 

approximation. The mathematical expressions have been generated for velocity 

components, pressure distributions, and squeezing forces which based on the slip 

and slightly viscoelastic factors. The acquired results are depicted graphically on 

different physical parameters. It is observed that the radial velocity, pressure and 

squeezing force are rising as the viscoelastic parameters increases. Moreover, it 

is analyzed that the slip parameter reduces pressure and squeezes force while 

increasing radial velocity at the upper disk, and when the slightly viscoelastic and 

slip parameters approach zero, the obtained solutions reflect the classical 

Newtonian fluid findings. 

Keywords: Squeeze Flow; Slip Parameter; Viscoelastic Fluid; Recursive 

Approach; Nonlinear Partial Differential Equations. 

Introduction 

The squeeze stream has several applications in different fields of 

science and engineering, including joint lubrication, compression molding 

of polymers, journal bearings, and damper processing (Hamrock et al., 

2004; Venerus, 2018; Yousfi et al., 2013). Squeezing flow is used to 

investigate the rheological behavior of viscous and viscoelastic fluids 

(Coussot, 2014; Engmann et al., 2005; Meeten, 2002). Viscoelastic fluids 

are categorized as differential, integral, and rate type, and these fluids have 

wide applications like plastic manufacturing, food processing, and 
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lubrication theory, and paint industry. Series of papers are written on the 

squeezing flow using various analytical techniques. 

The slip effect has wide applications in engineering, industry, and 

biosciences, and many researchers have examined the slip effect on 

viscous fluids with different geometries (Bhatti et al., 2020; Khokhar et al 

2023; Dehraj et al., 2020; Shah et al., 2022; H. Ullah et al., 2021). 

Researchers have worked on determining the analytical and numerical 

solutions for the Squeeze flow of Newtonian fluid with the slip effect in 

the last decay (Li et al., 2022; Qayyum et al., 2015; Siddiqui et al., 2010; 

Siddiqui et al., 2008; Ullah et al., 2014). Laun et al. (1999) has studied the 

influence of partial slip effect on the motion of squeeze flow for 

Newtonian and power-law fluids by employing Lubrication 

approximation theory. In these studies, authors have computed velocity 

profile only, and little attention is paid to computing others physical 

quantities like shear stress, pressure distribution, and squeeze force. 

Analytical and numerical solutions for the squeeze flow of viscoelastic 

fluids are also examined to obtain asymptotic solutions (Phan-Thien et al., 

1985; Phan-Thien et al., 1987). The effects of connective condition and 

Cattaneo-Christov theory for third order viscoelastic fluid on squeeze flow 

between two disk is analyzed using Homotopy method (Hayat et al., 2017; 

Shafiq et al., 2017). Series of papers have been published that are 

examining the effect of heat generation, chemical reaction, absorption, and 

Joule dissipation numerically on the Jefferey and Casson viscoelastic 

fluids for squeeze flow under the slip condition (Noor et al., 2022; Noor 

et al., 2021). Recently Memon et al. (2023) have constructed the analytical 

solutions for viscoelastic fluid squeezed between two disk with and 

without inertia by using recursive approach.  

The study of fluid dynamics has advanced significantly, with 

recent research focusing on the behavior of complex fluids and flow 

instabilities. Shaikh et al. (2024) has applied integral transform techniques 

to analyze unsteady fractionalized Oldroyd B fluid flow, enhancing 

understanding of these complex systems. Additionally, studies on 

parametric variations in contra-rotating disc systems and wall film cooling 

in combustion chambers have contributions in optimizing fluid systems in 

various engineering applications (Bhutto et al., 2024). The investigation 

regarding oscillating streams in MHD fluid flow adds another layer to 

understanding heat transfer in magnetic fields. Numerical analysis of flow 

rates, porous media, and Reynolds numbers affecting the combining and 

separating of Newtonian fluid flows (Bhutto et al., 2023). 

The literature review shows that slip effect for the squeeze flow 

of slightly viscoelastic fluid between two disks has not been examined yet. 

The aim of this study is to examine the analytical solution for the motion 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9CM9xCQAAAAJ&citation_for_view=9CM9xCQAAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9CM9xCQAAAAJ&citation_for_view=9CM9xCQAAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=9CM9xCQAAAAJ&citation_for_view=9CM9xCQAAAAJ:9yKSN-GCB0IC
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of a slightly viscoelastic fluid film in the effect of the Navier-slip condition 

by using a recursive approach. The governing equations of motion for 

viscoelastic squeezed flow are represented by a nonlinear system of partial 

differential equations subject to slip boundary conditions.  To compute the 

velocity profile, shear stress, pressure distribution, and squeeze force via 

the Langlois recursive approach is applied (Langlois, 1963; Langlois, 

1964). Using Mathematica, various physical parameters have been 

visualized. 

Mathematical Model   

In this study, the axisymmetric squeeze flow of slightly 

viscoelastic fluid is considered between two disks of the radius (𝑅)with 

constant viscosity (𝜇) as mentioned in Figure 1. The distance between the 

two disks is considered to be 2H and both disks are approached to each 

other with constant velocity (𝑉). The cylindrical coordinates are 

considered to describe the fluid motion and the slip condition is considered 

at upper disk  𝑧 = 𝐻. The effects of inertia and body forces are neglected. 

Based upon above assumptions the velocity vector is taken as follows:  

 

 
Figure 1: Squeeze flow between two Circular disks (Muravleva, 2018) 

 

[ ( , ),0, ( , )]V u r z w r z=
r

 (1) 

Based on the following basic governing equations, 

incompressible, slightly viscoelastic fluids will move in the absence of 

body force (Kacou et al., 1988; Memon et al., 2022): 

. 0V =
ur
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Here, 𝑉⃗  velocity vector, 𝜌 fluid density, 𝑝 pressure distribution, 𝜏 Cauchy 

stress tensor,  𝐷 𝐷𝑡⁄  material time derivative, 𝜇 viscosity, 𝐼 Identity tensor, 
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𝛽 material constant, 𝐴̰1 Rivlin-Erickson tensor and |𝐴̰1
2| Trace of the 

tensor, respectively. The derived mathematical model of axisymmetric 

squeeze flow of slightly viscoelastic fluid in component form is given in 

Equations (6-9) obtained by using above assumptions: 

0
u w u

r z r

 
+ + =

 
 (6) 

( ) 2

2
2

p u M w u M u
M u

r z r z r rr
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The non-zero four stress components are 
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(9) 

The boundary conditions for the above geometry of the problem 

are given as follows 

( )

0, 0 at 0

, at

rz w z

u
w V u z H t

z



 

= = =


= − = − =



 

  (10) 

Where 𝑉(𝑡) = −
𝑑𝐻

𝑑𝑡
, and 𝜀 are the slip coefficient and dimensionless 

parameter, respectively, but 𝜀 varies between 0 < 𝜀 ≤ 1. The first and 

second boundary conditions are taken by imposing the symmetry of the 

axisymmetric flow at 𝑧 = 0. The third and fourth boundary conditions are 

according to the slip at the upper disk and the upper disk moved with 

velocity 𝑉(𝑡). 

Analytical Solution for Flow Variables 

The coupled system of nonlinear PDEs given in Equation (6-9) 

subject to nonhomogeneous boundary conditions, Equation (10) is solved 

by using the recursive approach proposed by Langlois (Langlois, 1963, 

1964). The approximate analytical solution for the velocity components, 

pressure distribution, and stresses are obtained using Equation (11-14) into 

Equations (6-10). The linear systems of PDEs (Equations 15-27) of three 

different approximation orders 𝑂(𝜀), 𝑂(𝜀2)and 𝑂(𝜀3) gotten by equating 

terms of equal powers of 𝜀. 
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The following methods of the flow variables are employed. 
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Where 𝜀 is a small dimensionless number. Replacing the Equations (11-

14) in Equations (6-10) and by comparing the coefficients of the same 

order of 𝜀 have found the following three problems. 
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subject to boundary conditions 
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Subject to conditions 
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Subject to boundary conditions 
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Computation of Velocity Components  

By transforming the system of PDEs (Equations 15-18) with 

associated boundary conditions (Equation 19) into a system of stream 

functions, it has been proposed to model the velocity field of first-order 

approximation. After analyzing the relationship between the stream 

function and velocity in Equations (15-19) and eliminating the pressure 

from the outcome equation, the following Compatibility equation is found, 

Equation (28) of first-order approximation. 
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where 𝐸2 =
𝜕2

𝜕𝑟2 −
1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2, 𝐸4(∗) = 𝐸2(𝐸2(∗))and 𝜆 =
𝜍

𝐻
. The inverse 

method is used to obtain the solution of the problem (Equations 28-29) by 

considering the stream function as 𝜓(1)(𝑟, 𝑧) = 𝑟2𝛵(1)(𝑧) where 𝛵(1)(𝑧) 
is unknown function which will be determined. Thus by using considered 

stream function it yields: 
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Where 𝜉𝑖’s are the slip parameters and defined as 𝜉1 =
1

1+3𝜆
; 𝜉2 = 1 +

2𝜆; 𝜉3 = 1 + 5𝜆; 𝜉4 = 1 + 7𝜆; 𝜉5 = 1 + 9𝜆;. It is noticed that first-order 

velocity components (Equations 31-32) are matching the result with the 

creeping squeeze flow of First-grade fluid between two disks with slip 

conditions (Jasim, 2021). 

By reducing the system of PDEs in terms of stream functions, we 

are able to determine the velocity field of the second-order approximation 

from Equations (20-21) under homogeneous boundary conditions 

(Equation 20). The following problem can be derived using the 

relationship between stream function and velocity. 
( ) ( )24 , 0E r z =  (33) 
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(34) 

The solution of Equation (33) becomes zero for any assumptions of stream 

function due to the homogenous boundary condition and gets the 

following ( ) ( )2
, 0r z = ,𝑢(2)(𝑟, 𝑧) = 0 and 𝑤(2)(𝑟, 𝑧) = 0.  

The solution of the velocity field of the third-order approximation 

from Equations (23-26) corresponding to homogeneous boundary 

conditions (Equation 27) has been computed.  Substitution of the first-

order solution and the relation of stream function and velocity into 

Equations (31-32) and then eliminating the pressure by cross 

differentiating partially obtained the following: 
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The following boundary conditions are modified in terms of stream 

function: 
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(36) 

Similarly, the inverse method can be applied for the solution of Equation 

(35) subject to conditions (Equation 36) by using the following 

assumptions 𝜓(3)(𝑟, 𝑧) =
−81𝑉3𝜉1

3𝑟4

2𝐻8 𝛼(3)(𝑧) +
27𝑉3𝜉1

3𝑟2

𝐻6 𝜙(3)(𝑧) where 

𝜙(3)(𝑧) and 𝛼(3)(𝑧) are unknowns and to be determined. Using the 

mentioned assumption into Equations (35-36) which leads to ordinary 

system of differential equations with homogenous boundary conditions, 

and the solution of system of ordinary differential equations yields the 

following result: 
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(39) 

The third-order approximate solution of the velocity profile and 

stream function contains terms for slightly viscoelastic parameter 𝛽 and 

slip parameters (𝛬𝑖, 𝑖 = 1,⋯ ,11)this is the key aspect of the present study 

and taken as: 
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The achieved results by the proposed approach in the absence of 

a slightly viscoelastic parameter (𝛽 = 0) are strongly agreed with the 

results of the literature (Jasim, 2021; Li et al., 2022) for squeeze flow of 

first-grade fluid with slip condition. The solution of the velocity 

components for 𝛽 = 0 and slip parameter (𝜆 = 0) are in excellent 

coherence with the outcomes of the creeping squeeze flow of viscous fluid 

between two disks (Lee et al., 1982). If 𝜆 = 0, the results of the flow 

variables are satisfied with (Memon et al., 2022). 

Computation of Pressure Distribution  

The Equations (40-41) of pressure distribution at first order 

approximation is obtained from Equations (16-17) by using Equations (31-

32). 
( )1

1

3

3

2

V rp

r H

 −
=


 (40) 

( )1

1

2

3 Vp z

z HH

   
=  

  
 (41) 

The solution of Equations (40-41) is obtained by directly integration as 

follows: 

( ) ( )
2 2

1 1
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3
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4

V z r
p r z c

H H H

    
= − +  

   

  (42) 

Where 𝑐1is the constant of integration.  

The second order approximation of pressure distribution is 

obtained by putting the velocity profile of second order approximation into 

Equation (20). 
( ) ( )2 2

0, 0
p p

r z

 
= =

 
 (43) 

After the solution of Equation (43), acquired𝑝(2)(𝑟, 𝑧) = 𝑐2, where 𝑐2 is 

the constant of integration. By substituting Equations (38-39) into 

Equations (24-25) and solving for 𝑝(3), it yields the following third order 

approximation of pressure distribution. 

( ) ( )
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 (44) 
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The pressure distribution up to third order approximation is 

obtained by taking the sum of Equation (42-44) and it given as follows: 
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 (45) 

Where 𝐶 = 𝐶(1)𝜀 + 𝐶(2)𝜀2 + 𝐶(3)𝜀3. The constant of integration C  is 

obtained by average boundary condition which is proposed by (Lee et al., 

1982)). Thus the complete solution up to third order approximation for 

pressure distribution is given as follows: 
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(46) 

Where 
3 3 2 3
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Computation of Normal and Tangential Stresses 

The solution for Normal and Tangential stresses correct to third 

order approximation is found by inserting Equations (31, 32 , 38, 39) and 

Equation (46) into Equations (18, 21) and Equation (26), respectively, and 

by adding it yields: 
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(48) 

Where 
3 3 3 2
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Computation of Normal Squeeze Force 

Squeeze flow is characterized by the total force that must be 

applied on circular disks to compress viscoelastic material between them 

with constant velocity. The squeeze force at the upper disk is calculated 

by integrating the negative of the normal axial stress 𝜏𝑧𝑧over the plate 

surface and it yields: 
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(49) 

The proposed result is given in Equation (49) for the no-slip case (𝜆 = 0) 
and viscoelastic parameter (𝛽 = 0) are satisfying the result of (Lee et al., 

1982). 

Results and Discussion 

A recursive approach of Langlois is used in this study to obtain an 

approximate analytical solution for slow squeeze flow of slightly 

viscoelastic fluid films between two disks with slip effect. Dimensionless 

variables (50) are introduced to analyze the effects of viscoelastic(𝛽), slip 

parameter(𝜆), and radial distance(𝑟) on velocity components, pressure 

distribution, and normal squeeze forces. 
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(50) 

The behaviors of the flow variables are depicted in Equations (2-

8) by the graphical tool of the mathematics-based Mathematica software. 

A significant effect of the slightly viscoelastic parameter (𝛽) based on the 

radial velocity (𝑢) including the slip parameter (𝜆 = 0.15)is shown in 

Figures 2a-2d along with various radial points (𝑟 = 0.2; 0.5; 0.75 and 

1.0). It is stated that the boundary range close to the lower disk is 0 ≤ 𝑧 <
0.5, while the close to the upper disk is 0.5 ≤ 𝑧 < 1. It is noted that due 

to the rise in the slightly viscoelastic parameter the radial velocity 

increases close to the lower disk (0 ≤ 𝑧 < 0.5), whereas decreases close 

to the upper disk (0.5 ≤ 𝑧 < 1) and it has the maximum value at the center 

of the channel (𝑧 = 0).  
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(c) 

 

 
(d) 

Figure 2: Impact of slightly viscoelastic parameter (𝜷) on Radial velocity with 

fixed values of 𝜹 = 𝟎. 𝟏, 𝝀 = 𝟎. 𝟏𝟓at the following different radial points  (a) 

𝒓 = 𝟎. 𝟐;   (b) 𝒓 = 𝟎. 𝟓;   (c) 𝒓 = 𝟎. 𝟕𝟓;   (d) 𝒓 = 𝟏. 𝟎. 

 

Physically, the radial velocity of the flow is accelerating when 

both disks approach the squeezed channel. Conversely, the deceleration is 

due to the high thickness of material that slows the flow nearer the upper 

disk. This interprets the behavior of the shear-thickening fluid. 

Furthermore, the magnitude of the radial velocity at the point 𝑧 = 0.5 has 

not been impacted due to a rise in slightly viscoelastic parameters and 

backward flow has occurred on the edges of the channel for 𝛽 ≥ 0.48. The 

same behaviour of the radial velocity with variation in 𝛽 is also 

demonstrated in the study of Hayat et al. (2017). 

Figures 3a-3d illustrate the effect of the slip parameter on the 

radial velocity of the slightly viscoelastic fluid at different radial points. 

The influence of 𝜆 on radial velocity is surged near the wall of the upper 

disk and diminished close to the lower disk. Therefore, the increase in 𝜆 

shows that there is less friction in the vicinity of the upper disk between 

the surface and the fluid film and in view of that radial velocity escalates 
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in the region (𝑧 < 0.6) of the channel. Besides, velocity in the radial 

direction flows swiftly to the edges. 

 

 
(a) 

 

 
(b) 
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(d) 

Figure 3: Impact of slip parameter (𝝀) on Radial velocity with fixed values of 

𝜹 = 𝜷 = 𝟎. 𝟏 at different radial points (a) 𝒓 = 𝟎. 𝟐; (b) 𝒓 = 𝟎. 𝟓; (c) 𝒓 =
𝟎. 𝟕𝟓; (d) 𝒓 = 𝟏. 𝟎. 

 

The variation in Axial velocity with slip (𝜆 = 0.15) and no-slip 

effects (𝜆 = 0) due to 𝛽 is disclosed in Figures 4a and 4b. It is illustrated 

that in both effects the magnitude of axial velocity has enhanced for 𝛽 and 

negativity expressed the flow in the downward direction.  

Figures 5a-5b demonstrate the effect of some radial points and slip 

parameters on axial velocity. It is noticed that the magnitude of axial 

velocity increases with the rising of radial distance and decreases due to 

the slip parameter. 

Figures 6a and 6b manifest the dimensionless pressure distribution 

for slightly viscoelastic and viscous fluids on the upper disk to vary the 

slip parameter (𝜆). It shows the higher pressure for viscoelastic fluid 

whereas viscous fluid indicates the opposite, and the slip condition reduces 

the pressure for both fluids. The radial velocity intensifies along increases 

𝛽 in the vicinity of the upper disk. Therefore, it will decrease the velocity 

gradient respectively in the region and causes a reduction in pressure. 
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(b) 

Figure 4: Impact of slightly viscoelastic parameter (𝜷) on Axial velocity with 

(a) slip (b) No-slip parameters. 

 

 
(a) 

 

 
(b) 

Figure 5: Impact of (a) radial points (b) slip parameter on Axial velocity for 

slightly viscoelastic fluid. 
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(a) 

 

 
(b) 

Figure 6: Impact of slip parameter on pressure distribution of (a) Slightly 

viscoelastic fluid (b) Viscous fluid. 

 

Figures 7a and 7b illustrate the impact of   on the pressure with 

slip and no-slip conditions. It is shown that higher pressure is required to 

squeeze the slightly viscoelastic fluid and signified that the fluid is a shear 

thickening fluid. 

The squeeze force is plotted in Figures 8a-8b as the function of 

the aspect ratio (𝛿 =
𝑅

𝐻
) for examining the influence of the slip parameter 

and slightly viscoelastic parameter and it declines with the rise of   but 

surges due to the rise of 𝛽. Indeed, it declines because of the reduction of 

the friction force between the upper surface and fluid, and it surged due to 

the thickness of the material. For validation of results, the expressions of 

flow variables at (𝜆 = 0, 𝛽 = 0)have identically agreement with the 

squeeze flow of viscous fluid (Lee et al., 1982). 
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(a) 

 

 
(b) 

Figure 7: Impact of slightly viscoelastic parameter on pressure distribution 

with (a) slip condition (b) No-slip condition. 
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(b) 

Figure 8: Impact of (a) slip parameter with 𝜷 = 𝟎. 𝟑 (b) slightly viscoelastic 

parameter with 𝝀 = 𝟎. 𝟏𝟓 on squeeze force. 

Conclusion 

The analytical solution of the proposed model which comprised 

the non-linear system of PDEs with slip boundary conditions by the 

Langlois recursive approach has been obtained. It succeeded in getting the 

analytical expressions up to third-order approximations of the velocity 

profile, pressure distribution and squeeze force on the upper disk. The 

impact of pertinent parameters including slip and slightly viscoelastic on 

radial and axial velocity, pressure distribution and squeeze force have been 

portrayed graphically. The following appropriate key outcomes are given 

as follows. The radial velocity diminished for higher values of 𝛽 in the 

vicinity of the upper disk, in contrast, it surged close to the lower disk and 

backward flow occurred on the edges of the channel for 𝛽 ≥ 0.48. In 

response to increasing values of the slip parameter(𝜆), radial velocity 

accelerated close to the upper disk. When the slightly viscoelastic 

parameter (𝛽) is extended then the magnitude of axial velocity increases, 

while the slip parameter (𝜆) is increased it decreases. More pressure is 

needed in terms of squeezing the slightly viscoelastic fluid than the 

Newtonian fluid and the result signified the shear thickening fluid 

whereas, it drops off as the slip parameter rises. The squeeze force 

escalates on higher values of 𝛽 while gradually decreasing as surges in 𝜆. 
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