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Abstract  

This paper presents a novel ninth-order iterative scheme based on the Hermite 

interpolation technique for solving nonlinear equations arises in Real-World 

models of the form 𝑓(𝑥) = 0. In contrast to traditional methods, this approach 

does not use second derivatives, instead relying on three function evaluations and 

two first derivative evaluations per iteration. Existing iterative methods frequently 

suffer from slow convergence and the requirement for higher-order derivatives, 

which can be computationally costly. The proposed method addresses these 

limitations by providing a faster convergence without the computational burden 

of second derivatives. The Taylor series expansion is used to conduct a detailed 

convergence analysis of the proposed method. The method's effectiveness and 

stability are further validated by comparisons with existing approaches in the 

literature. 
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Introduction 

The real-world application problems in applied sciences are 

mostly reduced in solving single variable nonlinear equations. These 

nonlinear equations are solved by Iterative methods instead of direct 

methods (Ebelechukwu et al., 2018). Various methods have been proposed 

by researchers in this regard such as (Frontini & Sormani, 2003; Sharma 

& Bahl, 2017; Soomro et al., 2024). Some researchers proposed bracketing 

methods (Faraj et al., 2022; Intep, 2018; Jaafar et al., 2019; Kim et al., 

2021; Kodnyanko, 2021; Razbani, 2015; Suhadolnik, 2012, 2013). 

Qureshi et al. (2021) has proposed two step second order method. Li 

(2019), Li & Jiao (2009), and Soleymani (2011) have proposed fourth 

order methods. Moreover Khirallah & Alkhomsan (2023) and Zein (2023) 
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have proposed fifth order method using weight function without using 

second derivatives. Thota & Shanmugasundaram (2022) have presented 

two methods of order six and seven for solution of nonlinear equations. 

Lakho et al. (2024) have proposed a seventh order method using Lagrange 

interpolation technique. Sharma & Bahl (2017) have presented an eighth 

order optimal method for nonlinear equation. Kumar et al. (2013) and 

Qureshi et al. (2021) have proposed ninth order method. In this study, 

Hermite interpolation technique is employed to reduce one single 

derivative in the third stage. The efficiency index (Zein, 2023) (𝑝
1
𝑘⁄ , 

where 𝑝 is order of convergence and 𝑘 is number of functional evaluation) 

has been boosted. The aim is to propose a new nonlinear method that 

achieves a better convergence rate while minimizing the number of 

function evaluations needed per iteration.  

Proposed Method 

The proposed method using Hermite interpolation technique is 

derived below using three steps. 

For the first step we use Newtons method: 

𝑞𝑛 = 𝑝𝑛 −
𝑓(𝑝𝑛)

𝑓′(𝑝𝑛)
                                                (1) 

For the second step, we take a variant of Jarratt method.  

𝑟𝑛 =  𝑞𝑛 −
𝑓(𝑞𝑛)

𝑓′(𝑝𝑛)

5𝑓′2(𝑝𝑛)+3𝑓
′2(𝑞𝑛)

𝑓′2(𝑝𝑛)+7𝑓
′2(𝑞𝑛)

                             (2) 

For the third step, we use the newton method again.   

𝑝𝑛+1 = 𝑟𝑛 −
𝑓(𝑟𝑛)

𝑓′(𝑟𝑛)
                                              (3) 

So, we have a three-step method. 

Step 1.   𝑞𝑛 = 𝑝𝑛 −
𝑓(𝑝𝑛)

𝑓′(𝑝𝑛)
                            

Step 2. 𝑟𝑛 =  𝑞𝑛 −
𝑓(𝑞𝑛)

𝑓′(𝑝𝑛)

5𝑓′2(𝑝𝑛)+3𝑓
′2(𝑞𝑛)

𝑓′2(𝑝𝑛)+7𝑓
′2(𝑞𝑛)

Step 3.   𝑝𝑛+1 = 𝑟𝑛 −
𝑓(𝑟𝑛)

𝑓′(𝑟𝑛)
                         

  

}
 
 

 
 

                      (4) 

In (4), there are six function evaluations per iteration, here we approximate 

𝑓′(𝑟𝑛) using available data. Since we have four values 𝑓(𝑝),  𝑓′(𝑝), 𝑓(𝑞),
𝑓(𝑟) to approximate 𝑓′(𝑟) by its Hermite’s. 

Now let’s interpolate polynomial ℎ3of degree 3 at the nodes 𝑝, 𝑞, 𝑟 

and utilize the approximation 𝑓′(𝑟) ≈ ℎ3
′ (𝑟) in the third step of the 

iterative scheme. The third degree of Hermite’s interpolating polynomial 

has form 

ℎ3(𝑡) = 𝑏0 + 𝑏1(𝑡 − 𝑝) + 𝑏2(𝑡 − 𝑝)
2 + 𝑏3(𝑡 − 𝑝)

3              (5) 

By taking the derivative of (5) (w.r.t “𝑡”).  

ℎ3
′ (𝑡) = 𝑏1 + 2𝑏2(𝑡 − 𝑝) + 3𝑏3(𝑡 − 𝑝)

2                        (6) 
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The conditions' accessible data is used to determine the unknown 

coefficients.  

ℎ3(𝑝) = 𝑓(𝑝),     ℎ3(𝑞) = 𝑓(𝑞),     ℎ3(𝑟) = 𝑓(𝑟)     &     ℎ3
′ (𝑝) = 𝑓′(𝑝) 

Putting 𝑡 = 𝑝 into (5) & (6), we get 𝑏0 = 𝑓(𝑝) and 𝑏1 = 𝑓′(𝑝). By putting 

remaining two conditions in (6), 𝑡 = 𝑞 & 𝑡 = 𝑟, we get a system of two 

linear equations from which the coefficients 𝑏2 and 𝑏3 are derived. 

𝑏2 =
(𝑟−𝑝)𝑓[𝑞,𝑝]

(𝑟−𝑞)(𝑞−𝑝)
−
(𝑞−𝑝)𝑓[𝑟,𝑝]

(𝑟−𝑞)(𝑟−𝑝)
− 𝑓′(𝑝) (

1

𝑟−𝑝
−

1

𝑞−𝑝
)              (7) 

𝑏3 =
𝑓[𝑟,𝑝]

(𝑟−𝑞)(𝑟−𝑝)
−

𝑓[𝑞,𝑝]

(𝑟−𝑞)(𝑞−𝑝)
+

𝑓′(𝑝)

(𝑟−𝑝)(𝑞−𝑝)
                        (8) 

By putting the values of 𝑏1, 𝑏2, 𝑏3& 𝑡 = 𝑟 in (6) we get, 

ℎ3
′ (𝑟𝑛) = 2(𝑓[𝑝, 𝑟] − 𝑓[𝑞, 𝑝]) + 𝑓[𝑞, 𝑟] +

𝑞−𝑟

𝑞−𝑝
(𝑓[𝑞, 𝑝] − 𝑓′(𝑝))     (9) 

Now we replace 𝑓’(𝑟) in third step of (11) by (16) ℎ3
′ (𝑟𝑛)  and finally we 

get, 

Step 1.   𝑞𝑛 = 𝑝𝑛 −
𝑓(𝑝𝑛)

𝑓′(𝑝𝑛)
                                   

Step 2. 𝑟𝑛 =  𝑞𝑛 −
𝑓(𝑞𝑛)

𝑓′(𝑝𝑛)

5𝑓′2(𝑝𝑛)+3𝑓
′2(𝑞𝑛)

𝑓′2(𝑝𝑛)+7𝑓
′2(𝑞𝑛)

     

Step 3.   𝑝𝑛+1 = 𝑟𝑛 −
𝑓(𝑟𝑛)

ℎ3
′ (𝑟𝑛)

                              }
 
 

 
 

                 (10) 

Equation (10) is our proposed three step scheme. 

Convergence Analysis 

Theorem 

Suppose 𝛼 ∈  𝐷 represents a simple zero of a 

function 𝑓:  𝐷 ⊂  𝑅 →  𝑅, where 𝐷 is an open interval containing 𝑝0 as an 

initial approximation of 𝛼. In this case, if we consider the method (10), it 
possesses ninth-order accuracy and requires only five functional 

evaluations (three functions and two first derivative) per complete 

iteration.  

Proof: Taylor’s series expansion of 𝑓(𝑝𝑛). 

𝑓(𝑝𝑛) = ∑
𝑓𝑚(𝛼)

𝑚!
(𝑝𝑛 − 𝛼)

𝑚

∞

𝑚=0

= 𝑓(𝛼) + 𝑓′(𝛼)(𝑝𝑛 − 𝛼) + 

𝑓′′(𝛼)

2!
(𝑝𝑛 − 𝛼)

2 +
𝑓′′′(𝛼)

3!
(𝑝𝑛 − 𝛼)

3 +⋯                   (11) 

For simplicity, we assume that 𝐴𝑘  = (
1

𝑘!
)
𝑓𝑘(𝛼)

𝑓′(𝛼)
 ,  𝑘 ≥  2. 

And assume that 𝑒𝑛 = 𝑝𝑛 − 𝛼. Thus, we have 

𝑓(𝑝𝑛 ) = 𝑓
′(𝛼)(𝑒𝑛 + 𝐴2𝑒𝑛

2 + 𝐴3𝑒𝑛
3 + 𝐴4𝑒𝑛

4 +⋯+ 𝑂(𝑒𝑛
10))       (12) 

𝑓′(𝑝𝑛) = 𝑓
′(𝛼)(1 + 2𝐴2𝑒𝑛 + 3𝐴3𝑒𝑛

2 + 4𝐴4𝑒𝑛
3 +⋯+ 𝑂(𝑒𝑛

9)) (13) 
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From equation (12) & (13), we get   

Step 1. 𝑞𝑛 = 𝑝𝑛 −
𝑓(𝑝𝑛)

𝑓′(𝑝𝑛)
= 

𝑒𝑛 −
𝑓′(𝛼)(𝑒𝑛 + 𝐴2𝑒𝑛

2 + 𝐴3𝑒𝑛
3 + 𝐴4𝑒𝑛

4 +⋯+𝑂(𝑒𝑛
10))

𝑓′(𝛼)(1 + 2𝐴2𝑒𝑛 + 3𝐴3𝑒𝑛
2 + 4𝐴4𝑒𝑛

3 +⋯+ 𝑂(𝑒𝑛
9))

      (14) 

 

𝑞𝑛 = 𝐴2𝑒𝑛
2 + (−2𝐴2

2 + 2𝐴3)𝑒𝑛
3 + (4𝐴2

3 − 7𝐴2𝐴3 + 3𝐴4)𝑒𝑛
4 +  

(−8𝐴2
4 + 20𝐴2

2𝐴3 − 6𝐴3
2 − 10𝐴2𝐴4)𝑒𝑛

5 +⋯+ 𝑂(𝑒𝑛
10)      (15) 

𝑓(𝑞𝑛) = 𝑓
′(𝛼)

(

 
 

𝐴2𝑒𝑛
2 + (−2𝐴2

2 + 2𝐴3)𝑒𝑛
3 +

(5𝐴2
3 − 7𝐴2𝐴3 + 3𝐴4)𝑒𝑛

4 −

2(6𝐴2
4 − 12𝐴2

2𝐴3 + 3𝐴3
2 + 5𝐴2𝐴4)𝑒𝑛

5 +

…+𝑂(𝑒𝑛
10) )

 
 
   (16) 

And 

𝑓′(𝑞𝑛) = 𝑓
′(𝛼)

(

 
 
 
 
 
 

1 + 2𝐴2
2𝑒2 + 2𝐴2(−2𝐴2

2 + 2𝐴3)𝑒𝑛
3 +

(3𝐴2
2𝐴3 + 2𝐴2 (

4𝐴2
3 −

7𝐴2𝐴3 + 3𝐴4
))𝑒𝑛

4 +

(

6𝐴2𝐴3(−2𝐴2
2 + 2𝐴3) −

4𝐴2 (
4𝐴2

4 − 10𝐴2
2𝐴3 +

3𝐴3
2 + 5𝐴2𝐴4

)
)𝑒𝑛

5 +

…+ 𝑂(𝑒𝑛
10) )

 
 
 
 
 
 

    (17) 

From (12) and (17), we get  
𝑓(𝑞𝑛)

𝑓′(𝑝𝑛)
= 𝐴2𝑒𝑛

2 + (−4𝐴2
2 + 2𝐴3)𝑒𝑛

3 + 

(13𝐴2
3 − 14𝐴2𝐴3 + 3𝐴4)𝑒𝑛

4 −     

2(
19𝐴2

4 − 32𝐴2
2𝐴3 +

6𝐴3
2 + 10𝐴2𝐴4

)𝑒𝑛
5 +⋯+𝑂(𝑒𝑛

10)                       18) 

From (13) and (17), we get  

5𝑓′
2(𝑝𝑛) + 3𝑓

′2(𝑞𝑛) = 

𝑓′(𝛼)

(

 
 
 
 

8 + 20𝐴2𝑒𝑛 + (32𝐴2
2 + 30𝐴3)𝑒𝑛

2 −

4(6𝐴2
3 − 21𝐴2𝐴3 − 10𝐴4)𝑒𝑛

3 +

(
60𝐴2

4 − 66𝐴2
2𝐴3 +

45𝐴3
2 + 116𝐴2𝐴4

)𝑒𝑛
4 +

24(
−6𝐴2

5 + 9𝐴2
3𝐴3 −

5𝐴2
2𝐴4 + 5𝐴3𝐴4

)  𝑒𝑛
5 +⋯+ 𝑂(𝑒𝑛

10)
)

 
 
 
 

          (19) 

And 

𝑓′
2(𝑝𝑛) + 7𝑓

′2(𝑞𝑛) =  
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𝑓′(𝛼)

(

 
 
 
 

 8 + 4𝐴2𝑒𝑛 + (32𝐴2
2 + 6𝐴3)𝑒𝑛

2 −

4(14𝐴2
3 − 17𝐴2𝐴3 − 2𝐴4)𝑒𝑛

3 +

(
140𝐴2

4 − 154𝐴2
2𝐴3 +

9𝐴3
2 + 100𝐴2𝐴4

) 𝑒𝑛
4 +

8(
−42𝐴2

5 + 63𝐴2
3𝐴3 −

35𝐴2
2𝐴4 + 3𝐴3𝐴4

)  𝑒𝑛
5 +⋯+𝑂(𝑒𝑛

10)
)

 
 
 
 

         (20)  

From (19) and (20), we get 

5𝑓′
2(𝑝𝑛) + 3𝑓

′2(𝑞𝑛)

𝑓′2(𝑝𝑛) + 7𝑓
′2(𝑞𝑛)

= 1 + 2𝐴2𝑒𝑛 + 

(−𝐴2
2 + 3𝐴3)𝑒𝑛

2 +
1

2
(−7𝐴2

3 − 2𝐴2𝐴3 + 8𝐴4)𝑒𝑛
3 + 

1

4
(39𝐴2

4 − 67𝐴2
2𝐴3 + 9𝐴3

2 − 8𝐴2𝐴4)𝑒𝑛
4 + 

1

8
(

−71𝐴2
5 + 376𝐴2

3𝐴3 −

225𝐴2𝐴3
2 − 152𝐴2

2𝐴4 + 48𝐴3𝐴4
)𝑒𝑛

5 +⋯+𝑂(𝑒𝑛
10)       (21) 

From (18) and (21), we get 

𝑓(𝑞𝑛)

𝑓′(𝑝𝑛)

5𝑓′
2(𝑝𝑛) + 3𝑓

′2(𝑞𝑛)

𝑓′2(𝑝𝑛) + 7𝑓
′2(𝑞𝑛)

= 𝐴2𝑒𝑛
2 + (−2𝐴2

2 + 2𝐴3)𝑒𝑛
3 + 

(4𝐴2
3 − 7𝐴2𝐴3 + 3𝐴4)𝑒𝑛

4 +
1

2
(
−23𝐴2

4 + 42𝐴2
2𝐴3 −

12𝐴3
2 − 20𝐴2𝐴4

)𝑒𝑛
5 + 

…+ 𝑂(𝑒𝑛
10)                                            (22)               

From (14) and (22), we get 

𝑟𝑛 = 𝑞𝑛 −
𝑓(𝑞𝑛)

𝑓′(𝑝𝑛)

5𝑓′
2(𝑝𝑛) + 3𝑓

′2(𝑞𝑛)

𝑓′2(𝑝𝑛) + 7𝑓
′2(𝑞𝑛)

= 

1

2
(7𝐴2

4 − 2𝐴2
2𝐴3)𝑒𝑛

5 +
1

4
(
−91𝐴2

5 + 107𝐴2
3𝐴3 −

17𝐴2𝐴3
2 − 4𝐴2

2𝐴4
) 𝑒𝑛

6 +                

…+ 𝑂(𝑒𝑛
10)                                          (23) 

From (23), we get 

𝑓(𝑟𝑛) = 𝑓
′(𝛼)

(

 
 

1

2
(7𝐴2

4 − 2𝐴2
2𝐴3)𝑒𝑛

5 +

1

4
(
−91𝐴2

5 + 107𝐴2
3𝐴3 −

17𝐴2𝐴3
2 − 4𝐴2

2𝐴4
)𝑒𝑛

6 +

…+ 𝑂(𝑒𝑛
10) )

 
 
            (24)  

From (12) and (24), we get  

𝑓(𝑝𝑛) − 𝑓(𝑟𝑛) = 
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𝑓′(𝛼)

(

 

𝑒𝑛 + 𝐴2𝑒𝑛
2 + 𝐴3𝑒𝑛

3 + 𝐴4𝑒𝑛
4 +

1

2
(−7𝐴2

4 + 2𝐴2
2𝐴3)𝑒𝑛

5 +
1

4
(91𝐴2

5 − 107𝐴2
3𝐴3 +

17𝐴2𝐴3
2 + 4𝐴2

2𝐴4)𝑒𝑛
6 +⋯+𝑂(𝑒𝑛

10) )

        (25) 

And  

𝑝𝑛 − 𝑟𝑛 = 𝑒𝑛 +
1

2
(−7𝐴2

4 + 2𝐴2
2𝐴3)𝑒𝑛

5 +  

1

4
(
91𝐴2

5 − 107𝐴2
3𝐴3 +

17𝐴2𝐴3
2 + 4𝐴2

2𝐴4
)𝑒𝑛

6 +⋯+ 𝑂(𝑒𝑛
10)                   (26) 

From (25) and (26), we get  

𝑓[𝑝𝑛, 𝑟𝑛] =
𝑓(𝑝𝑛) − 𝑓(𝑟𝑛)

𝑝𝑛 − 𝑟𝑛
= 𝑓′(𝛼)

(

  
 

1 + 𝐴2𝑒𝑛 + 𝐴3𝑒𝑛
2 +

𝐴4𝑒𝑛
3 +

1

2
(7𝐴2

5 − 2𝐴2
3𝐴3)𝑒𝑛

5 +

…+ 𝑂(𝑒𝑛
10) )

  
 
  (27) 

From (19) and (23), we get 

𝑓(𝑞𝑛) − 𝑓(𝑝𝑛) = 𝑓
′(𝛼)

(

 
 
 
 
 
 
 

−𝑒𝑛 + (−2𝐴2
2 + 𝐴3)𝑒𝑛

3 +

(5𝐴2
3 − 7𝐴2𝐴3 + 2𝐴4)𝑒𝑛

4 −

2(
6𝐴2

4 − 12𝐴2
2𝐴3 +

3𝐴3
2 + 5𝐴2𝐴4

)𝑒𝑛
5 +

(

28𝐴2
5 − 73𝐴2

3𝐴3 +

37𝐴2𝐴3
2 + 34𝐴2

2𝐴4 −
17𝐴3𝐴4

)𝑒𝑛
6 +

…+ 𝑂(𝑒𝑛
10) )

 
 
 
 
 
 
 

      (28) 

And  

𝑞𝑛 − 𝑝𝑛 = −𝑒𝑛 + 𝐴2𝑒𝑛
2 + (−2𝐴2

2 + 2𝐴3)𝑒𝑛
3 + 

(4𝐴2
3 − 7𝐴2𝐴3 + 3𝐴4)𝑒𝑛

4 + (
−8𝐴2

4 + 20𝐴2
2𝐴3 −

6𝐴3
2 − 10𝐴2𝐴4

)𝑒𝑛
5 + 

(
16𝐴2

5 − 52𝐴2
3𝐴3 + 33𝐴2𝐴3

2 +

28𝐴2
2𝐴4 − 17𝐴3𝐴4

)𝑒𝑛
6 +⋯+ 𝑂(𝑒𝑛

10)           (29) 

And from (28) and (29) 

𝑓[𝑞𝑛, 𝑝𝑛] =
𝑓(𝑞𝑛) − 𝑓(𝑝𝑛)

𝑞𝑛 − 𝑝𝑛
= 
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𝑓′(𝑎)

(

 
 
 
 
 
 

1 + 𝐴2𝑒𝑛 + (𝐴2
2 + 𝐴3)𝑒𝑛

2 +

(−2𝐴2
3 + 3𝐴2𝐴3 + 𝐴4)𝑒𝑛

3 +

2(
2𝐴2

4 − 4𝐴2
2𝐴3 +

𝐴3
2 + 2𝐴2𝐴4

)  𝑒𝑛
4 +

(
−8𝐴2

5 + 20𝐴2
3𝐴3 − 9𝐴2𝐴3

2 −

11𝐴2
2𝐴4 + 5𝐴3𝐴4

)𝑒𝑛
5 +

…+ 𝑂(𝑒𝑛
10) )

 
 
 
 
 
 

                 (30) 

From (19) and (24), we get 

(𝑞𝑛) − 𝑓(𝑟𝑛) = 𝑓
′(𝛼)

(

 
 
 
 
 
 

𝐴2𝑒𝑛
2 + (−2𝐴2

2 + 2𝐴3)𝑒𝑛
3 +

(5𝐴2
3 − 7𝐴2𝐴3 + 3𝐴4)𝑒𝑛

4 +

1

2
(
−31𝐴2

4 + 50𝐴2
2𝐴3 −

12𝐴3
2 − 20𝐴2𝐴4

)𝑒𝑛
5 +

1

4
(
203𝐴2

5 − 399𝐴2
3𝐴3 + 165𝐴2𝐴3

2

+140𝐴2
2𝐴4 − 68𝐴3𝐴4

)𝑒𝑛
6 +

…+ 𝑂(𝑒𝑛
10) )

 
 
 
 
 
 

 (31) 

And  

𝑞𝑛 − 𝑟𝑛 = 𝐴2𝑒𝑛
2 + (−2𝐴2

2 + 2𝐴3)𝑒𝑛
3 + 

(4𝐴2
3 − 7𝐴2𝐴3 + 3𝐴4)𝑒𝑛

4 + 
1

2
(
−23𝐴2

4 + 42𝐴2
2𝐴3 −

12𝐴3
2 − 20𝐴2𝐴4

)𝑒𝑛
5 + 

1

4
(
155𝐴2

5 − 315𝐴2
3𝐴3 + 149𝐴2𝐴3

2

+116𝐴2
2𝐴4 − 68𝐴3𝐴4

)𝑒𝑛
6 + 

 
…+ 𝑂(𝑒𝑛

10)                                                (32) 
And from (31) and (32) 

𝑓[𝑞𝑛, 𝑟𝑛] =
𝑓(𝑞𝑛) − 𝑓(𝑟𝑛)

𝑞𝑛 − 𝑟𝑛
= 

𝑓′(𝛼)(
1 + 𝐴2

2𝑒𝑛
2 − 2(𝐴2(𝐴2

2 − 𝐴3)) 𝑒𝑛
3 +

𝐴2(4𝐴2
3 − 6𝐴2𝐴3 + 3𝐴4)𝑒𝑛

4 + 𝑂(𝑒𝑛
10)
)               (33) 

And  
𝑞𝑛 − 𝑟𝑛
𝑞𝑛 − 𝑝𝑛

= −𝐴2𝑒𝑛 + (𝐴2
2 − 2𝐴3)𝑒𝑛

2 + 

(−𝐴2
3 + 3𝐴2𝐴3 − 3𝐴4)𝑒𝑛

3 +
1

2
(
9𝐴2

4 − 10𝐴2
2𝐴3 +

4𝐴3
2 + 8𝐴2𝐴4

)𝑒𝑛
4 + 

1

4
(
−81𝐴2

5 + 123𝐴2
3𝐴3 − 37𝐴2𝐴3

2 −

24𝐴2
2𝐴4 + 20𝐴3𝐴4

)𝑒𝑛
5 +⋯+𝑂(𝑒𝑛

10)       (34) 

From (34), (30) & (13), we get 
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𝑞𝑛 − 𝑟𝑛
𝑞𝑛 − 𝑝𝑛

(
𝑓(𝑞𝑛) − 𝑓(𝑝𝑛)

𝑞𝑛 − 𝑝𝑛
− 𝑓′(𝑝𝑛)) = 

𝑓′(𝛼)

(

 
 
 
 
 
 

𝐴2
2𝑒𝑛

2 − 2(𝐴2(𝐴2
2 − 2𝐴3)) 𝑒𝑛

3 +

2(2𝐴2
4 − 5𝐴2

2𝐴3 + 2𝐴3
2 + 3𝐴2𝐴4)𝑒𝑛

4 +

1

2
(
−23𝐴2

5 + 50𝐴2
3𝐴3 − 32𝐴2𝐴3

2 −

28𝐴2
2𝐴4 + 24𝐴3𝐴4

)𝑒𝑛
5 +

1

4
(

155𝐴2
6 − 359𝐴2

4𝐴3 + 229𝐴2
2𝐴3

2 −

32𝐴3
3 + 136𝐴2

3𝐴4 − 176𝐴2𝐴3𝐴4 + 36𝐴4
2)𝑒𝑛

6 +

…+ 𝑂(𝑒𝑛
10) )

 
 
 
 
 
 

    (35) 

From (27), (30), (33) and (35), we get 

ℎ3
′ (𝑟𝑛) = 2(𝑓[𝑝𝑛, 𝑟𝑛] − 𝑓[𝑞𝑛, 𝑝𝑛]) + 𝑓[𝑞𝑛, 𝑟𝑛] 

+
𝑞 − 𝑟

𝑞 − 𝑝
(𝑓[𝑞𝑛, 𝑝𝑛] − 𝑓

′(𝑝)) = 

𝑓′(𝛼)

(

 
 
 

1 + 𝐴2𝐴4𝑒𝑛
4 + (

7𝐴2
5 − 2𝐴2

3𝐴3 −

2𝐴2
2𝐴4 + 2𝐴3𝐴4

)𝑒𝑛
5 +

1

2
(
−91𝐴2

6 + 107𝐴2
4𝐴3 − 17𝐴2

2𝐴3
2 +

4𝐴2
3𝐴4 − 14𝐴2𝐴3𝐴4 + 6𝐴4

2 )𝑒𝑛
6 +

…+𝑂(𝑒𝑛
10) )

 
 
 
            (36) 

From (24) and (36), we get 
𝑓(𝑟𝑛)

ℎ3
′ (𝑟𝑛)

=
𝑓(𝑟𝑛)

2(𝑓[𝑝𝑛, 𝑟𝑛] − 𝑓[𝑞𝑛, 𝑝𝑛]) + 𝑓[𝑞𝑛, 𝑟𝑛] +
𝑞 − 𝑟
𝑞 − 𝑝 (𝑓

[𝑞𝑛, 𝑝𝑛] − 𝑓
′(𝑝))

= 

1

2
(7𝐴2

4 − 2𝐴2
2𝐴3)𝑒𝑛

5 +
1

4
(
−91𝐴2

5 + 107𝐴2
3𝐴3 −

17𝐴2𝐴3
2 − 4𝐴2

2𝐴4
)𝑒𝑛

6 + 

1

8
(
699𝐴2

6 − 1468𝐴2
4𝐴3 + 629𝐴2

2𝐴3
2 −

36𝐴3
3 + 268𝐴2

3𝐴4 − 88𝐴2𝐴3𝐴4
)  𝑒𝑛

7 +⋯+ 𝑂(𝑒𝑛
10)     (37) 

𝑝𝑛+1 = 𝑟𝑛 −
𝑓(𝑟𝑛)

ℎ3
′ (𝑟𝑛)

=
1

2
𝐴2(7𝐴2

4 − 2𝐴2
2𝐴3)𝐴4𝑒𝑛

9 +⋯+ 𝑂(𝑒𝑛
10)  (38) 

Finally, the proposed method (10) has the ninth rate of convergence, 

requires two first derivatives and three function evaluations each iteration, 

and has an efficiency index of 1.551845574. 

Numerical Experiments and Results 

All the problems below are solved using Maple 2022 software on a 

laptop with the specifications: Intel(R) Core (TM) i3-4010U CPU @ 1.7 GHz 

and 8.00 GB RAM. 
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Problem 1: (Van der Waals equation representing a real gas) (Solaiman 

& Hashim, 2019; Sivakumar & Jayaraman, 2019; Solaiman & Hashim, 

2021). 

𝑓1(𝑝) = 0.986𝑝
3 − 5.181𝑝2 + 9.067𝑝 − 5.289  

Problem 2 : The equation that governs the depth of embedment 𝝁  for 

a sheet-pile wall is expressed as  (Naseem et al., 2021; Shams et al., 

2022). 

𝑓2(𝑝) =
𝑝3+2.87𝑝2−4.62𝑝−10.28

4.62
 s 

Problem 3 : Fluid permeability problem (Qureshi et al., 2021). 

𝑓3(𝑝) = 100𝑝
3 − 9.31(1 − 𝑝)3  

Newton Raphson Method (NRM) (Akram & Ann, 2012) and the methods 

proposed by Kumar et al. (2013) and Qureshi et al. (2021) are taken for 

the comparison. 

Table 1. Shows the absolute functional values at 4th iteration of example 1 with 

initial guess 𝒑𝟎 = 𝟐. 𝟎𝟑. 

Method Solution Iteration 

Proposed Method 6.66287E-3133 

4th iteration NRM 1.24483E-8 

Kumar et al. (2013) 4.89488E-879 

Qureshi et al. (2021) 4.91807E-2491 

Table 2. Shows the number of iterations to reach a fixed error E-3000 of 

problem 1. 

Methods No of iterations Error Fixed 

Proposed Method 4 

E-3000 NRM 13 

Kumar et al. (2013) 5 

Qureshi et al. (2021) 5 

Table 3. Shows the absolute functional values at 4th iteration of example 2 with 

initial guess 𝒑𝟎 = 𝟑. 𝟒. 

Method Solution Iteration 

Proposed Method 1.08266E-3019 

4th iteration NRM 1.19720E-5 

Kumar et al. (2013) 5.63861E-834 

Qureshi et al. (2021) 2.48619E-2370 
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Table 4. Shows the number of iterations to reach a fixed error E-3000 of 

problem 2. 

Methods No of iterations Error Fixed 

Proposed Method 4 

E-3000 NRM 13 

Kumar et al. (2013) 5 

Qureshi et al. (2021) 5 

Table 5. Shows the absolute functional values at 4th iteration of example 3 with 

initial guess 𝒑𝟎 = 𝟎. 𝟔. 

Method Solution Iteration 

Proposed Method 9.70939E-3218 

4th iteration NRM 1.57733E-5 

Kumar et al. (2013) 3.46867E-934 

Qureshi et al. (2021) 3.26183E-2837 

Table 6. Shows the number of iterations to reach a fixed error E-3000 of 

problem 3. 

Methods No of iterations Error Fixed 

Proposed Method 4 

E-3000 NRM 13 

Kumar et al. (2013) 5 

Qureshi et al. (2021) 5 

 

Various application problems are tested, and the results are shown 

in Tables 1 to 6, demonstrating that the proposed scheme achieves faster 

convergence than other counterpart methods and requiring fewer 

iterations. 

Basin of Attraction 

This section examines the dynamic behavior of proposed ninth-

order iterative method used to solve the nonlinear equation 𝑓(𝑧)  =  0, 

which involves the function 𝑓: 𝐶 →  𝐶 in a complex plane. Soleymani 

(2014) is the one who initially thought of and ascribed the basin of 

attraction for complex Newton's approach. 

To visualize the basins of attraction for complex functions, we 

utilize the efficient computer programming software MATLAB R2014a. 

Let us consider a rectangle 2𝐷 various complex plane and consider 

stopping criteria of threshold 10−10 with grid 600 × 600 points. 
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Problem 4: 𝑝1(𝑧) = 𝑧
3 − 1, 𝑝2(𝑧) = 𝑧

4 − 1, 𝑝3(𝑧) = 𝑧
5 + 1, 𝑝4(𝑧) =

𝑧3 − 2𝑧2 − 9, 𝑝5(𝑧) = 𝑧
4 − 4𝑧3 + 2 

 
Figure 1. Shows the polynomiographs of 𝒑𝟏(𝒛)by proposed method. 

 
Figure 2. Shows the polynomiographs of 𝒑𝟐(𝒛)by proposed method. 

 
Figure 3. Shows the polynomiographs of 𝒑𝟑(𝒛)by proposed method. 
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Figure 4. Shows the polynomiographs of 𝒑𝟒(𝒛)by proposed method. 

 
Figure 5. Shows the polynomiographs of 𝒑𝟓(𝒛)by proposed method. 

 

To test the stability of the proposed method, we draw the basins 

of attraction of various functions using the proposed method, as shown 

in Figures 1 to 5, which clearly demonstrate the stability of the proposed 

scheme in various problems in complex planes. The left-side Figures 

shows the roots and right-side figures shows the number of iterations. 

Conclusion 

In this research, we have developed a ninth-order approach 

utilizing the Hermite interpolation technique, demonstrating superior 

convergence performance with fewer iterations. To evaluate the 

effectiveness of the proposed method against existing techniques in the 

literature, we applied it to three distinct problems: the van der Waals 

equation representing a real gas, the depth of embedment (𝜇) for a sheet-

pile wall, and fluid permeability issues. The results show that proposed 

method consistently outperforms existing methods across all test cases, 

achieving superior performance with minimal function evaluations. 
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Additionally, the basin of attraction in the complex plane confirms the 

stability of the proposed method. 
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