Enhanced Laplace Adomian Decomposition Method for Nonlinear

Volterra Integral Equation
Muhammad Asim Ullah®, Jamal Uddinf, Murad Ali Shah?

Abstract

The Adomian Decomposition Method (ADM) can be directly applied with
constant or variable coefficients without using linearization, destruction or some
other unpreferable assumptions. The ADM is found rapidly converging on several
type of ordinary and partial differential equations. Though, some valuable and
significant modification in ADM like Laplace Adomian Decomposition Method
(LADM) and Modified Laplace Adomian Decomposition Method (MLADM) were
introduced by researchers. Despite better performance, the effectiveness,
weaknesses and inconsistencies of traditional and modification in ADM need to
be explored. Moreover, the performance and efficiency of Laplace based ADM
need to be further improved. Accordingly, the strength of two existing
modifications LADM and MLADM in ADM is integrated and a new technique
named Enhanced Laplace Adomian Decomposition Method (ELADM) is
introduced in this paper. Some illustrative examples are provided to analyze the
working of proposed ELADM, LADM and MLADM techniques where the
suggested scheme ELADM has proved accurate findings. The obtained results are
graphically presented and are discussed. The convergence of ELADM technique
is proved for solving nonlinear Volterra integral equation of second kind. The
overall absolute error obtained acknowledges that the solutions by the proposed
ELADM technique are very much similar to the exact solution. The suggested
ELADM approach is thus easy to adopt, and the precision of the solution is clear.

Keywords: Numerical Laplace Transform Method; Volterra Integral Equations;
Adomian Decomposition Method; Newton Raphson Formula

Introduction

The Nonlinear partial and ordinary differential equations and,
sometimes, integral or integro differential equations may explain the
majority of real-world phenomena. A strong approach for solving
nonlinear differential equations was proposed by George Adomian
(Adomian, 1988). Since then, this procedure has been referred to as the
process of Adomian Decomposition Method. The primary benefit of this
technique is that it can be directly applied with constant or variable
coefficients to all types of homogeneous or inhomogeneous equation
(Achouri & Omrani, 2009). Without using linearization, destruction or
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some other unpreferable assumptions that may alter the physical behavior
of the model, the ADM solves the problems explicitly and in an
uncomplicated way (Jiao et al., 2002). Another major gain is that the
approach is capable of significantly decreasing the measurement of
computational work. The rapid convergence of Adomian decomposition
method has been investigated by (Abbaoui & Cherruault, 1994; Babolian
& Biazar, 2002). Several linear and nonlinear ODE’s , PDE’s, Volterra
integral equation, Volterra integro differential equation, Fredholm integral
equation are solved by using Adomian decomposition method (Adomian,
1988); Biazar & Shafiof, 2007; Babolian & Mordad, 2011); Wazwaz,
1998; Nhawu et al., 2016). Many researchers modified classical ADM
through different aspects (Hussain, 2019; Xie, 2013; Hamoud & Ghadle,
2019).

In contrast with the conventional procedure of decomposition, the
ADM affiliations with the Laplace transform borrow less work. This was
first proposed by (Khuri, 2001). The Laplace transform is an integral
transform observed by Pierre-Simon Laplace L and is a strong and very
valuable method for solving ordinary and partial differential equations
which transform the original differential equation into an elementary
algebraic equation. The Laplace Adomian Decomposition Method's
primary benefit is the independence of parameters, small or large
(Hosseinzadeh et al., 2010). To achieve the exact solution of nonlinear
equations, this procedure is used, but for inhomogeneous differential
equations, it generates a noise term. Adomian and Rach recently presented
the so-called "noise terms" phenomenon. The terms are described as the
identical terms with adverse signs that appear in the components of the
series solution of u(x).

In (Khan et al., 2012), it is assumed that if terms in the u,
component are cancelled by terms in the u;, component, even if u,,
contain additional terms, the remaining non-cancelled u, terms provide
the exact solution. It was indicated in (Adomian & Rach, 1992) that the
noise term appears always for inhomogeneous equations. In (Wazwaz &
Mehanna, 2010) the author investigated the combined form of LADM for
analytical treatment of the nonlinear singular integral equation describing
heat transfer. Laplace Adomian decomposition method applied to solve
Burgers equation to prove their convergence in (Naghipour & Manafian,
2015). A computational technique applied for solving linear and nonlinear
Volterra integral equation of weakly kernels (Hendi, 2011). To find the
analytical solution of the linear and nonlinear systems of partial
differential equations, a numerical Laplace transform algorithm based on
the Adomian Decomposition Method is presented in (Fadaei, 2011,
Hamoud & Ghadle, 2017; Hussain, 2019). Some authors also improve and
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modify the technique from various aspects (Hamoud & Ghadle, 2017;
Hussain, 2019). Therefore, there are abundant applications where many
researchers use the Laplace Adomian Decomposition process (Hussain &
Khan, 2010; Khan & Faraz, 2011; Heris, 2012; Olubanwo et al., 2015;
Hamoud & Ghadle, 2017; Rani & Mishra, 2019). Our work is inspired by
their work, and we have tried to further improve the Modified Laplace
Adomian Decomposition Method technique.

In the present paper, our goal of research is to develop an
enhancement in LADM named Enhanced Laplace Adomian
Decomposition Method for finding the approximate solution of nonlinear
Volterra integral equations. In several research areas, such as the
population dynamics of epidemics and semi-conductor systems, Nonlinear
Volterra integral equations emerge (Wazwaz, 2011). Many researchers
have recently inquired about the solution to this problem. EXxisting
methods are presented to solve this kind of equations (Nhawu et al., 2016;
Hussain, 2019; Duan et al., 2012; Almousa, 2020).

In section 2, a brief discussion for the Enhanced Laplace Adomian
Decomposition method particularly on Nonlinear Volterra integral
equation of the second kind is presented. In Section 3, applications of this
method and numerical results by LADM, MLADM and ELADM are
illustrated and discussed. Section 4 ends this paper with a brief conclusion.

Analysis of Enhanced Laplace Adomian Decomposition Method
(ELADM) on Nonlinear Volterra Integral Equation

Previously Newton Raphson formula is used instead of Adomian
polynomial (Rani & Mishra, 2018) and in another modification (Hussain,
& Khan, 2010), the Laplace Adomian decomposition method is done by
splitting the value of u, in to two termsu; + u,. Accordingly, in this
research we integrate these two modifications as a single method called
Enhanced Laplace Adomian Decomposition Method (ELADM) to obtain
the approximate solution of nonlinear Volterra Integral equations.

Consider the non-linear Volterra integral equation with difference
kernel, i.e.

u(x) = f() + [, k(x — OF (u(®))dt (1)
where f(x) is a known real valued function, k (x,t) = k (x —t) and
F(u(x)) is u(x)'s nonlinear function.

On both sides of (1), apply Laplace Transform. Use the linear
property afterwards and Laplace transformation theorem of Convolution,
we have:

Llu@)I=L[f C)I+LIk (x — )IL[F (u(x))] ()
The approach requires the approximation of the (1) solution as an infinite
series provided by:
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u(x) = Xp=oun (¥) @)
The nonlinear expression F (u(x)) is however disintegrated as:
F(u(x)) = Y=o An(x) (4)

where, A,(x) are the so-called Adomian polynomials that can be
calculated using the following formula:

_ 14" i F(u;) _
An = | F (B0 At (wi — F,(ui)))],l =0,n>0 (5)
By putting Equations (4) and (3) into (2), we get:
LY=o un O] =L[f ()] +L[k(x — O)]L[Xn=0 An(x)] (6)
Using the linearity property of the Laplace transform, we obtained:
Ln=o Llun ()] = LIf ()] + LIk (x — O] XaZo L[An ()] (7)
To find the terms uy (%), uq(x), uy(x), uz(x) ... We have the following
iterative scheme of infinite series, matching both sides of (7):

Llug(x)] = LIf (x)] (8)
Generally, the relation shows:

Llup+1(0)] = LIk (x — )]L[An(x)] n =0 €)

Apply the inverse Laplace transformation to (8) and (9), we get:
uo(x) = LHLIF(0)]] (10)
Uns1(¥) = L7 L[k(x — ©)]L[An(x)]] n=0 (11)
We use Laplace now, first of all, to change the terms on the right side of
Equation (10) we gain the values of ug (x),uq (x), ........ u, (x) respectively

by applying the inverse Laplace transformation.
We consider that f(x) can be split into the sum of two terms, namely f; (x)
and f; (x) to apply this modification, so we get:

fO)=fol) + fi(x) (12)
Under this consideration, we suggest a slight variation only in the
components u,, u,. The variation we suggest is that only the part f; (x) be
assigned to the uy, whereas the remaining part f; (x) be merged with the
other terms described in Equation (11) to define u;. In consideration of
these recommendations, the modified recursive algorithm is formulated as
follows:

uy(x) = LYLIfo(x)]] (13)
w () = flx) + L‘l[L[k(x - t)]L[Ao(x)]] (14)
Uny1 () = LHLIk(x = ©)]L[An ()] (15)

Experimental Results on Several Modifications in Adomian
Decomposition Method

This section elaborates and explains the effectiveness and
generalization of proposed ELADM by comparing its results with some
modifications in ADM. Three examples of Nonlinear Volterra Integral
equation are solved on Laplace Adomian Decomposition method
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(LADM), Modified Laplace decomposition (MLADM) and Enhanced
Laplace Adomian decomposition method (ELADM). The results are
compared with exact solution. Moreover, the Absolute Error value for
each example is also calculated. The results are presented in the form of
tables and graphs. In order to validate the proposed ELADM for solving
the nonlinear Volterra integral equation, three different examples are
considered.

Example 1
Solve the following nonlinear Volterra integral equation
(Wazwaz, 2015):
u(x) = x2 — 2-x6 + [ (x — P () dt (16)
having exact solution u(x) = x?2.

Solution

Case I: LADM
In this case, we will solve Equation (16) using Laplace Adomian
Decomposition Method based on Newton Raphson formula:

u() = £0) + A [0 k(e Hu(tydt (17)
Implementing Laplace transform on both sides of Equation (16) and by

using the linearity property, we have:
Aux)] =L [xz - %x‘s] + L[x]L[u?(x)] (18)
The approach assumes that the functional series solution is u(x):
AT oun ()] = L]x? = 2-x |+ SLER An@]  (19)
Using the formula given in Equation (5), the nonlinear expression F (u(x))
= u?(x) is broken down. The following are the terms of modified

Adomian polynomials:

Ag = (%)2 uj, A= (%)2 (wouq), Az = (%)2 Quou, +uf), Az =

1 2
(E) (Qugus + 2uquy).
Comparing both sides of Equation (19), gives the continual algorithm:

1
Llug(x)] = L [x2 — 5x6] (20)
In general,
Lty (0] = S LA ()] 120 (21)
The translation of inverse Laplace to the above iterative steps means:
ug(x) = x% — 3—10x6 (22)

Using general relation, we have:
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x6 x14 x10
71101(95) - Ejs_ 655200 _145400 22 (23)
227
U () = b (24)
43200 36088415584 1572480 36324287224
and so forth.
. . 5 x 7510
Consequently, the solution comes in the form: u(x) = x* — 20 73200

x14 227X18 x22
1123200 36088415584 36324287224 "

Case II: MLADM

The same example is now solved by Modified Laplace Adomian
decomposition method. Applying transforming Laplace on both sections
of Equation (1):

Au@)] = £]x? = x® |+ LIx]L[u2 )] (25)
The approach assumes that the series function solution wu(x) is:
AT oun (O] = L[x2 =328 [+ LT 0 An (0] (26)

Applying inverse Laplace transformation on both sides of Equation (26):

LLIE g un (T2 | £[x2 = 5 ]|+ £ [Z 2180 An (o))
(27)

The nonlinear term F(u(x)) =u?(x) is broken down by utilizing the

formula described in Equation (5). Comparing both sides of Equation (27),
gives the Modified Laplace algorithm is given below:

U (x) = x? (28)
() = = 5+ L7 [ 2 214,00 (29)
In general,
s (1) = £ S L1 0]| mz1 (30
From Equation (29) we find the value of u, (x):
5
u;(x) = —3—10x6 + ’1(—0 (31)
By using the general relation, we find the value of u, (x):
9 8
u,(x) = —zxﬁ+% (32)
and so forth.
. x6 x5 x®  xB
The solution thus takes the form of: u(x) = x? —=+=—-—+= ...

30 10 270 80

Case I11: ELADM

In this case we will take the same example and solve this by
Enhanced Laplace Adomian decomposition method. Applying
transforming Laplace on both sides of Equation (1):
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Aux)] = L[ 2 %xé ] + L[x]L[u?(x)] (33)
The approach assumes that the functional series solution is u(x):
AT oun ()] = L]x? = 52 | + 5 LIE5 An ()] (34)

Applying inverse Laplace transform on both sections of Equation (34) :

LA LT unN]=L | L[5 = x| + £ | ZL1Zi0 An ]|
(35)

The nonlinear term F(u(x)) =u?(x) is broken down by utilizing the

algorithm describe by Equation (5). Comparing both sides of Equation
(35), gives the Enhanced Laplace algorithm is given below:

Ug(x) = x2 (36)
() = =553 + L7 |3 LU ]| (37)
In general,
tner @ = L7 F LA n=1 (3®)
From Equation (38) we find the value of u, (x):
6
w @) = -3 (39)
Thus by using general relation we have:
10
u(x) = - 1:400 (40)
uz(x) = 1049:33200 (41)

and so forth.

10 14

6
Thus the solution takes the form: u(x) = x2 — = - = .
40 14400 10483200

In Table 1, we compare the exact solution and approximate
solution of LADM based on Newton Raphson formula and MLADM with
ELADM for nonlinear Volterra integral equation for example 1. Also we
find their absolute error value and we see that the value of ELADM is very
close to exact solution than that of LADM and MLADM. By this
comparison we conclude that LADM perform better than MLADM, but
our proposed ELADM perform better as compared to both LADM and
MLADM according to absolute error value. Figure 1 shows the graphical
representation of the exact solution and approximate solutions which
shows the closeness to the exact solution.

Example 2
Solve the following nonlinear Volterra integral equation:

u(x) = 2x — —x* +0.25 [ (x — tyut () dt (42)
having exact solution u(x) = 2x.
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Table 1: Comparison of Absolute Error of Different Technique for Example 1.

X Exact ELADM MLADM LADM Absolute Absolute Absolute
Solution Error of Error of Error of
ELADM MLADM LADM
0 0 0 0 0 0 0 0
0.05 0.0025 0.00696 2.500% 1073 0.004999 4x 10710 3.07x 1078 1x 107°
0.1 0.01 0.03998 0.0100028 0.029998 2.5%x 1078 9.68x 1077 2.5%x 1078
0.15 0.0225 0.024223 0.02312212 0.023972 297x 1077  7.22x107% 2.848x 1077
0.2 0.04 0.06869 0.0400677 0.049984 1.60x 107¢  2.99x 10~° 1.6x 107
0.25 0.0625 0.06542 0.0627154 0.063497 6.11x 107®  8.92x 1075 6.104x 107°
0.3 0.09 0.09984 0.0902323 0.099834 1.83x 1075 2.25x 107* 1.823x 107>
0.35 0.1225 0.123404  0.123664662 0.123404 467x 1075 4.82x107* 4.711x107°
0.4 0.16 0.28993 0.1624688 0.159989 1.02x 107*  8.97x 10™* 1.024x 107*
0.45 0.2025 0.2023242 0.2042054 0.202324 2.13x10™* 1.67x 1073 2.083x 107*
0.5 0.25 0.31312 0.2535761 0.256122 3.92x 107 27x107%  3.923x 107*
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Figure 1: Comparison of Exact Solution and Approximate Solution for
Example 1.
Solution
Case |I: LADM

In this case, we will solve Equation (42) using Laplace Adomian
Decomposition Method based on Newton Raphson formula. On both sides
of Equation (42), applying Laplace transform:

Aux)] =L [Zx — %x‘*] + 0.25 Lx]L[u?(x)] (43)

The approach consider that the series function solution is u(x):
Ao un ()] = L]2x = x|+ 5 LT 4] 44)
The nonlinear expression F (u(x)) =u?(x) is broken down by utilizing the

algorithm given by Equation (5). The continuous algorithm is given by
comparing the two sides of Equation (44):

ug(x) = 2x — %x“ (45)
In general,
1
Lltns1 (0] = -5 LA ®)] 120 (46)
The translation of inverse Laplace to the above iterative steps means:
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1
ug(x) = 2x — Ex‘* (47)
By using the general relation we get:
x7 x*
ul(j:) = 207360 _132016 Elo . (48)
37 11
Up(x) = — = v5150 " 7903035 " 50 (49)
4777574400 905748480 2903040 8064
and so on.
4
Consequently, the solution comes in the form of: u(x) = 2x — %—
x7 xlO 37x13 X16

2688 | 967680 | 005748480 4777574400 T

Case Il1: MLADM
The same example is now solved by Modified Laplace Adomian
decomposition method:
Aux)] =L [Zx — %x“] + 0.25 L[x]L[u?(x)] (50)
The approach assumes that the series function solution u(x) is:
AT oun (@] = £]2x = Zx*| + S LT, An(0)]  (BD)
Applying the inverse transform of Laplace on both sides of Equation (51):
LS un (=L | £[2x = St ]| £ [ 1B An ]|
(52)
If the nonlinear expression F(u(x)) =u?(x) is decomposed by the

algorithm given in (5). The continuous algorithm is given by comparing
both sides of Equation (52):

uy(x) = 2x (53)
() = — 5t + L7 | L LA (54)
In general,
tna (1) = £7 [ 5 LU0 =1 (55)
From the above scheme we find that:
w o) =-S+< (56)
Using the general relation we get:
() = — 2+ X (57)
and so on.

Consequently, the solution comes in the form of: u(x) = 2x — g +§—

6 5

X X

144 60"
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Case I11: ELADM
In this case we take the same example and solve this by Enhanced
Laplace Adomian decomposition method. On both sides of Equation (42),
applying Laplace transform:
Aulx)] = [zx - 1x ] +0.25 L[x]L[u?(x0)] (58)
The approach assumes that the functlonal series solution is u(x):

Aotn ()] = £]20 = Lot [+ 5 LER 0 An0]  (59)
Applying an inverse transform of Laplace on both sides of Equation (59):
LML un =L | £[2x = St ||+ £7 |5 £IZ 0 Ao

(60)
The nonlinear expression F(u(x)) =u?(x) is broken down by utilizing the

formula presenter by Equation (5). The continuous algorithm gives the
relation of both sides of Equation (60):

uy(x) = 2x (61)
() = — x4 L7 [ L LA (62)
In general,

Un41(x) = [ [An(0)]|n =1 (63)

Using the above iterative step we get:
(o) = -5 (64)
() = — (65)
uz(x) = 7;4?16::0 (66)

and so forth.

4- 7
Hence, the solution comes in the form of. u(x) = 2x—E—5:76
17x10
77414-40+

The comparison of exact solution and approximate solution is
given in Table 2. The comparison shows that the absolute error value of
ELADM is less than that of LADM based on Newton Raphson formula
and MLADM for nonlinear Volterra integral equation of example 2. Here
we also noted that the outcome of LADM is best than that of MLADM.
However the performance of our technique ELADM is good as compared
to both LADM and MLADM. Figure 2 shows the graphical representation
of the approximate solution which is very much close to exact solution.
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25 T T 3 3 3 3 3 3 3
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—— MLADM
—— ELADM
2N Exact
15F .
g
2
1 i
050 "
0 r r r r r r r r r
0 01 02 03 04 05 06 07 08 09 1
X
Figure 2: Comparison of Exact Solution and Approximate Solution for
Example 2.
Example 3
Solve the following nonlinear Volterra integral equation:
u(x) = x2 + —x f" u2(t) dt (67)

having exact solution u(x) = x2.
Solution

Case |I: LADM
In this case, we will solve Equation (67) using Laplace Adomian
Decomposition Method. Applying transformation to Laplace on both
aspects of Equation (67):
Aux)] =L [x + - ] — = L[u?(x)] 68)
The approach assumes that the functlonal serles solution u(x) is:

ATiimgun ()] = L[x? + x5 | =3 LIER An(0)]  (69)
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Table 2: Comparison of Absolute Error of Different Techniques for Example 2.

X Exact ELADM MLADM LADM Absolute Error ~ Absolute Error  Absolute Error of
Solution of ELADM of MLADM LADM

0 0 0 0 0 0 0 0
0.05 0.1 0.0999996 0.10002032 0.1999961  3.913x 1077 2.032x 1075 3.91x 1077
0.1 0.2 0.1999945 0.20028531 0.1999938 6.3x 107 1.653x 10™* 6.3x 107°
0.15 0.3 0.2999741  0.3012159 0.2999745  3.241x 107> 5.229x 107* 3.341x 1075
0.2 0.4 0.4999998 0.40121889 0.4999995 1.002x 10™* 1.219x 1073 1.001x 10~*
0.25 0.5 0.4997565 0.50233235 0.4997559  2.442x 107* 2.332x 1073 2.443%x 1074
0.3 0.6 0.5995409 0.60386045 0.5994937  5.063x 10~* 3.905x 1073 5.133x 107*
0.35 0.7 0.6991398 0.70670132 0.6990619  9.401x 10~* 5.971x 1073 9.413x 107
0.4 0.8 0.7984976 0.80867556 0.7983994 1.600x 1073 8.757x 1073 1.601x 1073
0.45 0.9 0.8974442 0.91202024 0.8974362  2.649x 1073 0.012020243 2.643x 1073
0.5 1 0.9961249 1.01603733 0.9960909  3.920x 1073 0.0160433 3.913x 1073

The Sciencetech 64 Volume 5, Issue 1, Jan-Mar 2024



Enhanced Laplace Adomian Decomposition Method for Nonlinear Volterra Ullah et al.

The nonlinear term F(u(x)) = u?(x) is decomposed by the formula
given in Equation (5). The continuous algorithm gives the relation of both
section of Equation (69):

Llug(x)] = £ [xz + %xs] (70)

In general,
Lhing @] = =5 L[4,(0] n=1 (71)
The translation of inverse Laplace to the above iterative steps means that:
uy(x) = x2 + 1—10x5 (72)
w()=-5 -5 (73)

8 800 315
2101x12  191x° x5

4435200 40320 64000

(1) =5+ 74)

and so forth.
5
Consequently, thus the solution comes in the form of: u(x) = x2 + f—o -

x* 8x7  x® 2101x'%  191x° x15

8 800 315 EZ 4435200 40320 64000

Case Il: MLADM

The same example is now solved by Modified Laplace Adomian
decomposition method. Applying transformation to Laplace on both sides
of Equation (67):

HAux)] =L [x2 + %OxS] —% L[u?(x)] (75)
The approach assumes the series function solution u(x) is:
AT oun ()] = L3+ x° | =2 LT 0 An ()] (76)

Applying an inverse transform of Laplace on both sides of Equation (76):
LS un =L | £[x2 4 50 || = £ [ 1Eim An 0]
(77)

The nonlinear expression F(u(x)) =u?(x) is broken down using the

algorithm given by Equation (5). The continuous algorithm makes the
comparison of both sides of Equation (77):

uy(x) = x? (78)
1 5 1 1
uy(x) = Ex —L [Eﬁ[Ao(x)]] (79)
In general,
Uppr () = —L71 [%ll[An(x)]] n=1 (80)
b0 =5 -5 (8D)
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7x6 | 5x*
Up () = =S+ - (82)

5
Consequently, the solution takes the form of: u(x) = x? + % —x3 -
7x®  5x*

20 2

Case I11: ELADM

In this case we will take the same example and solve this by
Enhanced Laplace Adomian decomposition method. Applying
transformation to Laplace on both sides of Equation (67):

HAu)] = £[x? + 25| = 3 Lu? ()] (83)
The approach assumes that the series function solution is u(x):
Arioun (] = Lx? + 5% | = LB, An]  (88)

Applying the inverse transform of Laplace on both sides of Equation (84)
LT un =L £]37 + 5527 || - £ [ 21250 4n 0]
(85)

The nonlinear term F(u(x)) =u?(x) is decomposed with the formula
given by Equation (5). The continuous algorithm makes a comparison of
both sides of Equation (85):

up(x) = x? (86)
() = 155 = £7 [2 L[4, (87)
In general,
tnr () = L7 [ LUARGOI| =1 (88)
x> xt

u; (x) —1—0—7? ) (89)
u,(x) = —%+% (90)

and so forth.

5 4 7

Therefore, the solution comes in the form of: u(x) = x2 + % — % — % +

x6

64

The particular solution of Laplace Adomian decomposition
method based on Newton Raphson formula and Modified Laplace
Adomian Decomposition method and the one result by our strategy
corresponding to the different x values are show in Table 3 and seen in
Figure 3. The absolute error set out in the table acknowledges that the
solutions obtained by our technique ELADM are very much similar to the
exact solution.
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Table 3: Comparison of Absolute Error of Different Techniques for Example 3

X Exact ELADM MLADM LADM Absolute

Solution Error of

ELADM

0 0 0 0 0 0

0.05 0.0025 0.0043023 2.41x 1073 0.0027302 7.67x 1077
0.1 0.01 0.0295144 9.32x 1073 0.050743 1.173x 1075
0.15 0.0225 0.022512 0.02044232 0.022572 5.632x 1075
0.2 0.04 0.048334 0.040096 0.3983303 1.68x 10™*
0.25 0.0625 0.0621125 0.05733203 0.062115 3.934x 1074
0.3 0.09 0.0892395 0.08326 0.0924423 7.783x 107*
0.35 0.1225 0.1212012 0.1170231 0.1212221 1.352x 1073
0.4 0.16 0.158752 0.159604 0.157952 2.133x 1073
0.45 0.2025 0.1993035 0.21335883 0.1993847 3.199% 1073
0.5 0.25 0.2469844 0.278913 0.2454645 4.540% 1073

Absolute
Error of
MLADM
0
1.094%x 10~*
7.494x 107
2.11x 1073
3.990x 1073
5.853x 1073
6.822x 1073
5.582x 1073
4.096x 10~*
0.0103583
0.0390625

Absolute Error
of LADM

0
7.498% 1077
0.0407338
5.5634x 107°
0.36337503
3.9344x 107*
7.6555% 10~*
1.3542x 1073
2.1531x 1073
3.2433x 1073
4.6343x 1073
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0
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Figure 3: Comparison of Exact Solution and Approximate Solution for
Example 3

Conclusion

In this research paper, we have presented the combination of two
powerful modifications for solving Nonlinear Volterra integral equations,
which are known as Enhanced Laplace Adomian decomposition method.
The method that has been proposed in this research is capable of handling
a wide class of nonlinear Volterra integral equation. It is noted that
ELADM minimize the computational work as compared to existing
modifications in ADM like LADM and MLADM. The solution illustrated
in the form of tables and figures indicate that the ELADM has a good
approximation to the exact solution and has less absolute error as
compared to that of LADM and MLADM. It is also observed that while
implementing the techniques in solving non-linear Volterra integral
equation the LADM outperforms MLADM. However our proposed
Enhanced Laplace Adomian Decomposition method performs better as
compared to both LADM and MLADM for all considered cases. Therefore
we can say that the proposed ELADM is a more generally efficient and
effective method for solving non-linear Volterra integral equations. It is
also worth mentioning that the feature of the proposed approach is to
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demonstrate a successful convergence of the solution. Thus the proposed
method is easily implemented and manifestly shows the accuracy of
solution.

The completion of this research led to an understanding of many
topics, such as the nonlinear Volterra integro differential equation, that
require further investigation. Despite the better performance, an attempt
should be made to increase the consistency of the solution. The definition
of linear or nonlinear operators and the use of an alternative transformation
are possible areas for this to be explored. The Adomian polynomials could
also be examined further. This idea of integrating the strong concepts of
individual methods may be used to examine the challenges of convergence
and the efficiency of other classical techniques.
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