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Abstract 

The Adomian Decomposition Method (ADM) can be directly applied with 

constant or variable coefficients without using linearization, destruction or some 

other unpreferable assumptions. The ADM is found rapidly converging on several 

type of ordinary and partial differential equations. Though, some valuable and 

significant modification in ADM like Laplace Adomian Decomposition Method 

(LADM) and Modified Laplace Adomian Decomposition Method (MLADM) were 

introduced by researchers. Despite better performance, the effectiveness, 

weaknesses and inconsistencies of traditional and modification in ADM need to 

be explored. Moreover, the performance and efficiency of Laplace based ADM 

need to be further improved. Accordingly, the strength of two existing 

modifications LADM and MLADM in ADM is integrated and a new technique 

named Enhanced Laplace Adomian Decomposition Method (ELADM) is 

introduced in this paper. Some illustrative examples are provided to analyze the 

working of proposed ELADM, LADM and MLADM techniques where the 

suggested scheme ELADM has proved accurate findings. The obtained results are 

graphically presented and are discussed. The convergence of ELADM technique 

is proved for solving nonlinear Volterra integral equation of second kind. The 

overall absolute error obtained acknowledges that the solutions by the proposed 

ELADM technique are very much similar to the exact solution. The suggested 

ELADM approach is thus easy to adopt, and the precision of the solution is clear. 

Keywords: Numerical Laplace Transform Method; Volterra Integral Equations; 

Adomian Decomposition Method; Newton Raphson Formula 

Introduction 

The Nonlinear partial and ordinary differential equations and, 

sometimes, integral or integro differential equations may explain the 

majority of real-world phenomena. A strong approach for solving 

nonlinear differential  equations was proposed by George Adomian  

(Adomian, 1988).  Since then, this procedure has been referred to as the 

process of Adomian Decomposition Method. The primary benefit of this 

technique is that it can be directly applied with constant or variable 

coefficients to all types of homogeneous or inhomogeneous equation 

(Achouri & Omrani, 2009). Without using linearization, destruction or 
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some other unpreferable assumptions that may alter the physical behavior 

of the model, the ADM solves the problems explicitly and in an 

uncomplicated way (Jiao et al., 2002). Another major gain is that the 

approach is capable of significantly decreasing the measurement of 

computational work. The rapid convergence of Adomian decomposition 

method has been investigated by (Abbaoui & Cherruault, 1994; Babolian 

& Biazar, 2002). Several linear and nonlinear ODE’s , PDE’s, Volterra 

integral equation, Volterra integro differential equation, Fredholm integral 

equation are solved by using Adomian decomposition method  (Adomian, 

1988); Biazar & Shafiof, 2007; Babolian & Mordad, 2011); Wazwaz,  

1998; Nhawu et al., 2016). Many researchers modified classical ADM 

through different aspects (Hussain, 2019; Xie, 2013; Hamoud & Ghadle, 

2019). 

In contrast with the conventional procedure of decomposition, the 

ADM affiliations with the Laplace transform borrow less work. This was 

first proposed by (Khuri, 2001). The Laplace transform is an integral 

transform observed by Pierre-Simon Laplace L and is a strong and very 

valuable method for solving ordinary and partial differential equations 

which transform the original differential equation into an elementary 

algebraic equation. The Laplace Adomian Decomposition Method's 

primary benefit is the independence of parameters, small or large 

(Hosseinzadeh et al., 2010). To achieve the exact solution of nonlinear 

equations, this procedure is used, but for inhomogeneous differential 

equations, it generates a noise term. Adomian and Rach recently presented 

the so-called "noise terms" phenomenon. The terms are described as the 

identical terms with adverse signs that appear in the components of the 

series solution of 𝑢(𝑥). 

In (Khan et al., 2012), it is assumed that if terms in the 𝑢0  

component are cancelled by terms in the 𝑢1, component, even if 𝑢1,  

contain additional terms, the remaining non-cancelled 𝑢0 terms provide 

the exact solution. It was indicated in (Adomian & Rach, 1992)  that the 

noise term appears always for inhomogeneous equations. In (Wazwaz & 

Mehanna, 2010)  the author investigated the combined form of LADM for 

analytical treatment of the nonlinear singular integral equation describing 

heat transfer. Laplace Adomian decomposition method applied to solve 

Burgers equation to prove their convergence in (Naghipour & Manafian, 

2015). A computational technique applied for solving linear and nonlinear 

Volterra integral equation of weakly kernels (Hendi, 2011). To find the 

analytical solution of the linear and nonlinear systems of partial 

differential equations, a numerical Laplace transform algorithm based on 

the Adomian Decomposition Method is presented in (Fadaei, 2011; 

Hamoud & Ghadle, 2017; Hussain, 2019). Some authors also improve and 
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modify the technique from various aspects  (Hamoud & Ghadle, 2017; 

Hussain, 2019). Therefore, there are abundant applications where many 

researchers use the Laplace Adomian Decomposition process (Hussain & 

Khan, 2010; Khan & Faraz, 2011; Heris, 2012; Olubanwo et al., 2015; 

Hamoud & Ghadle, 2017; Rani & Mishra, 2019). Our work is inspired by 

their work, and we have tried to further improve the Modified Laplace 

Adomian Decomposition Method technique. 

In the present paper, our goal of research is to develop an 

enhancement in LADM named Enhanced Laplace Adomian 

Decomposition Method for finding the approximate solution of nonlinear 

Volterra integral equations. In several research areas, such as the 

population dynamics of epidemics and semi-conductor systems, Nonlinear 

Volterra integral equations emerge (Wazwaz, 2011). Many researchers 

have recently inquired about the solution to this problem. Existing 

methods are presented to solve this kind of equations (Nhawu et al., 2016; 

Hussain, 2019; Duan et al., 2012; Almousa, 2020). 

In section 2, a brief discussion for the Enhanced Laplace Adomian 

Decomposition method particularly on Nonlinear Volterra integral 

equation of the second kind is presented. In Section 3, applications of this 

method and numerical results by LADM, MLADM and ELADM are 

illustrated and discussed. Section 4 ends this paper with a brief conclusion. 

Analysis of Enhanced Laplace Adomian Decomposition Method 

(ELADM) on Nonlinear Volterra Integral Equation  

Previously Newton Raphson formula is used instead of Adomian 

polynomial (Rani & Mishra, 2018)  and in another modification (Hussain, 

& Khan, 2010), the Laplace Adomian decomposition method is done by 

splitting the value of 𝑢0 in to two terms 𝑢1 + 𝑢2. Accordingly, in this 

research we integrate these two modifications as a single method called 

Enhanced Laplace Adomian Decomposition Method (ELADM) to obtain 

the approximate solution of nonlinear Volterra Integral equations. 

Consider the non-linear Volterra integral equation with difference 

kernel, i.e.    

𝑢(𝑥) = 𝑓(𝑥) +  ∫ 𝑘(𝑥 − 𝑡)𝐹(𝑢(𝑡))𝑑𝑡
𝑥

0
                      (1) 

where 𝑓(𝑥) is a known real valued function, 𝑘 (𝑥, 𝑡) = 𝑘 (𝑥 − 𝑡) and 

𝐹(𝑢(𝑥)) is 𝑢(𝑥)'s nonlinear function. 

On both sides of (1), apply Laplace Transform. Use the linear 

property afterwards and Laplace transformation theorem of Convolution, 

we  have:  

𝐿[𝑢(𝑥)]=𝐿[𝑓(𝑥)]+𝐿[𝑘(𝑥 − 𝑡)]𝐿[𝐹(𝑢(𝑥))]                    (2) 

The approach requires the approximation of the (1) solution as an infinite 

series provided by:  
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𝑢(𝑥) =  ∑ 𝑢𝑛
∞
𝑛=0 (𝑥)                                          (3) 

The nonlinear expression 𝐹(𝑢(𝑥)) is however disintegrated as: 

𝐹(𝑢(𝑥)) =  ∑ 𝐴𝑛(𝑥)∞
𝑛=0                                      (4) 

where, 𝐴𝑛(𝑥) are the so-called Adomian polynomials that can be 

calculated using the following formula: 

𝐴𝑛 =  
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛 [𝑓 (∑ 𝜆𝑖 (𝑢𝑖 −
𝐹(𝑢𝑖)

𝐹ˊ(𝑢𝑖)
)𝑛

𝑖=0 )] 𝜆 = 0, 𝑛 ≥ 0            (5) 

By putting Equations (4) and (3) into (2), we get: 

𝐿[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =𝐿[𝑓(𝑥)] +𝐿[𝑘(𝑥 − 𝑡)]𝐿[∑ 𝐴𝑛(𝑥)∞

𝑛=0 ]            (6) 

Using the linearity property of the Laplace transform, we obtained: 
∑ 𝐿[𝑢𝑛(𝑥)]∞

𝑛=0 = 𝐿[𝑓(𝑥)] + 𝐿[𝑘(𝑥 − 𝑡)] ∑ 𝐿∞
𝑛=0 [𝐴𝑛(𝑥)]         (7) 

To find the terms 𝑢0(𝑥),  𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥) … We have the following 

iterative scheme of infinite series, matching both sides of (7):      

𝐿[𝑢0(𝑥)] = 𝐿[𝑓(𝑥)]                                          (8) 

Generally, the relation shows: 

𝐿[𝑢𝑛+1(𝑥)] = 𝐿[𝑘(𝑥 − 𝑡)]𝐿[𝐴𝑛(𝑥)]      𝑛 ≥ 0              (9)                       

Apply the inverse Laplace transformation to (8) and (9), we get: 

𝑢0(𝑥) =  𝐿−1[𝐿[𝑓(𝑥)]]                                     (10) 

  𝑢𝑛+1(𝑥) =  𝐿−1[𝐿[𝑘(𝑥 − 𝑡)]𝐿[𝐴𝑛(𝑥)]]     𝑛 ≥ 0                (11) 

We use Laplace now, first of all, to change the terms on the right side of 

Equation (10) we gain the values of 𝑢0(𝑥),𝑢1(𝑥), ........ 𝑢𝑛(𝑥) respectively 

by applying the inverse Laplace transformation. 

We consider that 𝑓(𝑥) can be split into the sum of two terms, namely 𝑓0(𝑥) 

and 𝑓1(𝑥)  to apply this modification, so we get: 

                                   𝑓(𝑥) = 𝑓0(𝑥) + 𝑓1(𝑥)   (12) 

Under this consideration, we suggest a slight variation only in the 

components 𝑢0, 𝑢1. The variation we suggest is that only the part 𝑓0(𝑥) be 

assigned to the 𝑢0, whereas the remaining part 𝑓1(𝑥) be merged with the 

other terms described in Equation (11) to define 𝑢1. In consideration of 

these recommendations, the modified recursive algorithm is formulated as 

follows: 

                                         𝑢0(𝑥) =  𝐿−1[𝐿[𝑓0(𝑥)]]                                 (13) 

               𝑢1(𝑥) = 𝑓1(𝑥) +  𝐿−1[𝐿[𝑘(𝑥 − 𝑡)]𝐿[𝐴0(𝑥)]]                   (14) 

                 𝑢𝑛+1(𝑥) =  𝐿−1[𝐿[𝑘(𝑥 − 𝑡)]𝐿[𝐴𝑛(𝑥)]]                        (15) 

Experimental Results on Several Modifications in Adomian 

Decomposition Method 

This section elaborates and explains the effectiveness and 

generalization of proposed ELADM by comparing its results with some 

modifications in ADM. Three examples of Nonlinear Volterra Integral 

equation are solved on Laplace Adomian Decomposition method 
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(LADM), Modified Laplace decomposition (MLADM) and Enhanced 

Laplace Adomian decomposition method (ELADM). The results are 

compared with exact solution. Moreover, the Absolute Error value for 

each example is also calculated. The results are presented in the form of 

tables and graphs. In order to validate the proposed ELADM for solving 

the nonlinear Volterra integral equation, three different examples are 

considered. 

Example 1 

Solve the following nonlinear Volterra integral equation 

(Wazwaz, 2015): 

                𝑢(𝑥) = 𝑥2 −
1

30
𝑥6 + ∫ (𝑥 − 𝑡)𝑢2(𝑡)

𝑥

0
𝑑𝑡                      (16) 

having exact solution 𝑢(𝑥) = 𝑥2. 

Solution 

Case I: LADM 

In this case, we will solve Equation (16) using Laplace Adomian 

Decomposition Method based on Newton Raphson formula:  

                 𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
                        (17) 

Implementing Laplace transform on both sides of Equation (16) and by 

using the linearity property, we have:  

                    ℒ[𝑢(𝑥)] = ℒ [𝑥2 −
1

30
𝑥6 ] +  ℒ[𝑥]ℒ[𝑢2(𝑥)]                 (18) 

The approach assumes that the functional series solution is 𝑢(𝑥): 

             ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [𝑥2 −

1

30
𝑥6 ] +

1

𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]          (19) 

Using the formula given in Equation (5), the nonlinear expression 𝐹(𝑢(𝑥)) 

= 𝑢2(𝑥) is broken down. The following are the terms of modified 

Adomian polynomials:  

𝐴0 = (
1

2
)

2
  𝑢0

2, 𝐴1 = (
1

2
)

2
(𝑢0𝑢1), 𝐴2 =  (

1

2
)

2
(2𝑢0𝑢2 + 𝑢1

2), 𝐴3 =

(
1

2
)

2
(2𝑢0𝑢3 + 2𝑢1𝑢2). 

Comparing both sides of Equation (19), gives the continual algorithm: 

                  ℒ[𝑢0(𝑥)] =  ℒ [𝑥2 −
1

30
𝑥6]                                (20) 

In general,  

       ℒ[𝑢𝑛+1(𝑥)] =  
1

𝑠2 ℒ[𝐴𝑛(𝑥)]      𝑛 ≥ 0                          (21) 

The translation of inverse Laplace to the above iterative steps means: 

                                   𝑢0(𝑥) =  𝑥2 −
1

30
𝑥6                                           (22)        

Using general relation, we have: 
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                           𝑢1(𝑥) =  
𝑥6

120
+

𝑥14

655200
−

𝑥10

5400
                                   (23) 

              𝑢2(𝑥) =
𝑥10

43200
+

227𝑥18

36088415584
−

𝑥14

1572480
−

𝑥22

36324287224
          (24) 

and so forth. 

Consequently, the solution comes in the form: 𝑢(𝑥) = 𝑥2 −
𝑥6

40
−

7𝑥10

43200
+

𝑥14

1123200
+

227𝑥18

36088415584
−

𝑥22

36324287224
…. 

 

Case II: MLADM 

The same example is now solved by Modified Laplace Adomian 

decomposition method. Applying transforming Laplace on both sections 

of Equation (1):  

ℒ[𝑢(𝑥)] = ℒ [𝑥2 −
1

30
𝑥6 ] +  ℒ[𝑥]ℒ[𝑢2(𝑥)]                    (25) 

The approach assumes that the series function solution  𝑢(𝑥) is: 

       ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [𝑥2 −

1

30
𝑥6 ] +

1

𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]            (26) 

Applying inverse Laplace transformation on both sides of Equation (26): 

 ℒ−1[ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ]]=ℒ−1 [ ℒ [𝑥2 −

1

30
𝑥6 ]] + ℒ−1 [

1

𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]]          

(27) 

The nonlinear term 𝐹(𝑢(𝑥)) =𝑢2(𝑥) is broken down by utilizing the 

formula described in Equation (5). Comparing both sides of Equation (27), 

gives the Modified Laplace algorithm is given below: 

 𝑢0(𝑥) = 𝑥2                                             (28) 

   𝑢1(𝑥) = −
1

30
𝑥6 + ℒ−1 [

1

𝑠2 ℒ[𝐴0(𝑥)]]                        (29) 

In general, 

                      𝑢𝑛+1(𝑥) = ℒ−𝟏 [
1

𝑠2 ℒ[𝐴𝑛(𝑥)]]     𝑛 ≥ 1                       (30) 

From Equation (29) we find the value of  𝑢1(𝑥): 

                                𝑢1(𝑥) = −
1

30
𝑥6 +

𝒙𝟓

10
                                    (31) 

By using the general relation, we find the value of  𝑢2(𝑥): 

                                𝑢2(𝑥) = −
𝑥9

270
+

𝑥8

80
                                     (32) 

and so forth. 

The solution thus takes the form of: 𝑢(𝑥) = 𝑥2 −
𝑥6

30
+

𝒙𝟓

10
−

𝑥9

270
+

𝑥8

80
 … 

Case III: ELADM  

In this case we will take the same example and solve this by 

Enhanced Laplace Adomian decomposition method. Applying 

transforming Laplace on both sides of Equation (1): 
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                   ℒ[𝑢(𝑥)] = ℒ [𝑥2 −
1

30
𝑥6 ] +  ℒ[𝑥]ℒ[𝑢2(𝑥)]                       (33) 

The approach assumes that the functional series solution is 𝑢(𝑥): 

     ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [𝑥2 −

1

30
𝑥6 ] +

1

𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]               (34) 

Applying inverse Laplace transform on both sections of Equation (34) :  

ℒ−1[ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ]]=ℒ−1 [ ℒ [𝑥2 −

1

30
𝑥6 ]] + ℒ−1 [

1

𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]]   

(35) 

The nonlinear term 𝐹(𝑢(𝑥)) = 𝑢2(𝑥) is broken down by utilizing the 

algorithm describe by Equation (5). Comparing both sides of Equation 

(35), gives the Enhanced Laplace algorithm is given below: 

                                      𝑢0(𝑥) = 𝑥2                                                  (36) 

                       𝑢1(𝑥) = −
1

30
𝑥6 + ℒ−1 [

1

𝑠2 ℒ[𝐴0(𝑥)]]                           (37) 

In general, 

𝑢𝑛+1(𝑥) = ℒ−𝟏 [
1

𝑠2 ℒ[𝐴𝑛(𝑥)]]        𝑛 ≥ 1                    (38) 

From Equation (38) we find the value of  𝑢1(𝑥): 

                                   𝑢1(𝑥) =  −
𝑥6

40
                                           (39) 

Thus by using general relation we have: 

                                         𝑢2(𝑥) = −
𝑥10

14400
                                              (40) 

                                    𝑢3(𝑥) =
𝑥14

10483200
                                             (41) 

and so forth. 

Thus the solution takes the form:  𝑢(𝑥) =  𝑥2  −
𝑥6

40
−

𝑥10

14400
 + 

𝑥14

10483200
 … 

In Table 1, we compare the exact solution and approximate 

solution of LADM based on Newton Raphson formula and MLADM with 

ELADM for nonlinear Volterra integral equation for example 1. Also we 

find their absolute error value and we see that the value of ELADM is very 

close to exact solution than that of LADM and MLADM. By this 

comparison we conclude that LADM perform better than MLADM, but 

our proposed ELADM perform better as compared to both LADM and 

MLADM according to absolute error value. Figure 1 shows the graphical 

representation of the exact solution and approximate solutions which 

shows the closeness to the exact solution. 

Example 2 

Solve the following nonlinear Volterra integral equation: 

       𝑢(𝑥) = 2𝑥 −  
1

12
𝑥4 + 0.25 ∫ (𝑥 − 𝑡)𝑢2(𝑡)

𝑥

0
𝑑𝑡                 (42) 

having exact solution 𝑢(𝑥) = 2𝑥. 
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Table 1: Comparison of Absolute Error of Different Technique for Example 1. 

X Exact 

Solution 

ELADM MLADM LADM Absolute 

Error of 

ELADM 

Absolute 

Error of 

MLADM 

Absolute 

Error of 

LADM 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 

0.0025 

0.01 

0.0225 

0.04 

0.0625 

0.09 

0.1225 

0.16 

0.2025 

0.25 

0 

0.00696 

0.03998 

0.024223 

0.06869 

0.06542 

0.09984 

0.123404 

0.28993 

0.2023242 

0.31312 

0 

2.500× 10−3 

0.0100028 

0.02312212 

0.0400677 

0.0627154 

0.0902323 

0.123664662 

0.1624688 

0.2042054 

0.2535761 

0 

0.004999 

0.029998 

0.023972 

0.049984 

0.063497 

0.099834 

0.123404 

0.159989 

0.202324 

0.256122 

0 

4× 10−10 

2.5× 10−8 

2.97× 10−7 

1.60× 10−6 

6.11× 10−6 

1.83× 10−5 

4.67× 10−5 

1.02× 10−4 

2.13× 10−4 

3.92× 10−4 

0 

3.07× 10−8 

9.68× 10−7 

7.22× 10−6 

2.99× 10−5 

8.92× 10−5 

2.25× 10−4 

4.82× 10−4 

8.97× 10−4 

1.67× 10−3 

2.7× 10−3 

0 

1× 10−9 

2.5× 10−8 

2.848× 10−7 

1.6× 10−6 

6.104× 10−6 

1.823× 10−5 

4.711× 10−5 

1.024× 10−4 

2.083× 10−4 

3.923× 10−4 
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Figure 1: Comparison of Exact Solution and Approximate Solution for 

Example 1. 

Solution 

Case I: LADM 

In this case, we will solve Equation (42) using Laplace Adomian 

Decomposition Method based on Newton Raphson formula. On both sides 

of Equation (42), applying Laplace transform: 

   ℒ[𝑢(𝑥)] = ℒ [2𝑥 −  
1

12
𝑥4] + 0.25 ℒ[𝑥]ℒ[𝑢2(𝑥)]                (43) 

The approach consider that the series function solution is 𝑢(𝑥):  

   ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [2𝑥 −  

1

12
𝑥4] +

1

4𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]           44) 

The nonlinear expression 𝐹(𝑢(𝑥)) =𝑢2(𝑥) is broken down by utilizing the 

algorithm given by Equation (5). The continuous algorithm is given by 

comparing the two sides of Equation (44): 

                       𝑢0(𝑥) =  2𝑥 −  
1

12
𝑥4                                      (45) 

In general,  

              ℒ[𝑢𝑛+1(𝑥)] =  
1

4𝑠2 ℒ[𝐴𝑛(𝑥)]     𝑛 ≥ 0                         (46) 

The translation of inverse Laplace to the above iterative steps means: 
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                        𝑢0(𝑥) =  2𝑥 −  
1

12
𝑥4                                     (47) 

By using the general relation we get: 

                             𝑢1(𝑥) =
𝑥10

207360
−

𝑥7

2016
+

𝑥4

48
                                 (48)  

            𝑢2(𝑥) = −
𝑥16

4777574400
+

37𝑥13

905748480
−

11𝑥10

2903040
 + 

𝑥7

8064
              (49) 

and so on. 

Consequently, the solution comes in the form of: 𝑢(𝑥) = 2𝑥 −  
𝑥4

16
−

𝑥7

2688
+

𝑥10

967680
+

37𝑥13

905748480
−

𝑥16

4777574400
+ ⋯ 

Case II: MLADM  

The same example is now solved by Modified Laplace Adomian 

decomposition method: 

    ℒ[𝑢(𝑥)] = ℒ [2𝑥 −  
1

12
𝑥4] + 0.25 ℒ[𝑥]ℒ[𝑢2(𝑥)]             (50) 

The approach assumes that the series function solution  𝑢(𝑥) is: 

    ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [2𝑥 −  

1

12
𝑥4] +

1

4𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]            (51) 

Applying the inverse transform of Laplace on both sides of Equation (51): 

 ℒ−1[ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ]]=ℒ−1 [ ℒ [2𝑥 − 

1

12
𝑥4 ]] ℒ−1 [

1

4𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]]    

(52)    

If the nonlinear expression 𝐹(𝑢(𝑥)) =𝑢2(𝑥) is decomposed by the 

algorithm given in (5). The continuous algorithm is given by comparing 

both sides of Equation (52): 

                                 𝑢0(𝑥) = 2𝑥                                               (53) 

                     𝑢1(𝑥) = −
1

12
𝑥4 + ℒ−1 [

1

4𝑠2 ℒ[𝐴0(𝑥)]]                         (54) 

In general, 

                           𝑢𝑛+1(𝑥) = ℒ−1 [
1

4𝑠2 ℒ[𝐴𝑛(𝑥)]]     𝑛 ≥ 1                        (55) 

From the above scheme we find that:  

                                𝑢1(𝑥) = −
𝑥4

12
+

𝑥3

6
                                             (56) 

Using the general relation we get:  

                                  𝑢2(𝑥) = −
𝑥6

144
+

𝑥5

60
                                            (57) 

and so on. 

Consequently, the solution comes in the form of: 𝑢(𝑥) = 2𝑥 −
𝑥4

12
+

𝑥3

6
−

𝑥6

144
+

𝑥5

60
… 
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Case III: ELADM 

In this case we take the same example and solve this by Enhanced 

Laplace Adomian decomposition method. On both sides of Equation (42), 

applying Laplace transform: 

 ℒ[𝑢(𝑥)] = ℒ [2𝑥 −  
1

12
𝑥4] + 0.25 ℒ[𝑥]ℒ[𝑢2(𝑥)]                  (58) 

The approach assumes that the functional series solution is 𝑢(𝑥): 

          ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [2𝑥 − 

1

12
𝑥4] +

1

4𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]        (59) 

Applying an inverse transform of Laplace on both sides of Equation (59):   

ℒ−1[ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ]]=ℒ−1 [ ℒ [2𝑥 −  

1

12
𝑥4 ]] + ℒ−1 [

1

4𝑠2 ℒ[∑ 𝐴𝑛(𝑥)∞
𝑛=0 ]] 

(60)    

The nonlinear expression 𝐹(𝑢(𝑥)) =𝑢2(𝑥) is broken down by utilizing the 

formula presenter by Equation (5). The continuous algorithm gives the 

relation of both sides of Equation (60): 

                                         𝑢0(𝑥) = 2𝑥                                           (61) 

                            𝑢1(𝑥) = −
1

12
𝑥4 + ℒ−1 [

1

4𝑠2 ℒ[𝐴0(𝑥)]]                      (62) 

In general, 

   𝑢𝑛+1(𝑥) = ℒ−1 [
1

4𝑠2
ℒ[𝐴𝑛(𝑥)]] 𝑛 ≥ 1                          (63) 

Using the above iterative step we get: 

                                            𝑢1(𝑥) = −
𝑥4

16
                                (64) 

                                        𝑢2(𝑥) = −
𝑥7

5376
                                         (65) 

                                         𝑢3(𝑥) =
17𝑥10

7741440
                                        (66)                                            

and so forth. 

Hence, the solution comes in the form of: 𝑢(𝑥) = 2𝑥 −
𝑥4

16
−

𝑥7

5376
+

17𝑥10

7741440
+ ⋯ 

The comparison of exact solution and approximate solution is 

given in Table 2. The comparison shows that the absolute error value of 

ELADM is less than that of LADM based on Newton Raphson formula 

and MLADM for nonlinear Volterra integral equation of example 2. Here 

we also noted that the outcome of LADM is best than that of MLADM. 

However the performance of our technique ELADM is good as compared 

to both LADM and MLADM. Figure 2 shows the graphical representation 

of the approximate solution which is very much close to exact solution. 
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Figure 2:  Comparison of Exact Solution and Approximate Solution for 

Example 2. 

Example 3  

 Solve the following nonlinear Volterra integral equation: 

                   𝑢(𝑥) = 𝑥2 +  
1

10
𝑥5 −

1

2
∫ 𝑢2(𝑡)

𝑥

0
𝑑𝑡                            (67)     

having exact solution 𝑢(𝑥) = 𝑥2. 

Solution 

Case I: LADM 

 In this case, we will solve Equation (67) using Laplace Adomian 

Decomposition Method. Applying transformation to Laplace on both 

aspects of Equation (67): 

             ℒ[𝑢(𝑥)] = ℒ [𝑥2 +  
1

10
𝑥5] −

1

2
 ℒ[𝑢2(𝑥)]                        68) 

The approach assumes that the functional series solution 𝑢(𝑥) is: 

    ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [𝑥2 +  

1

10
𝑥5 ] −

1

2
ℒ[∑ 𝐴𝑛(𝑥)∞

𝑛=0 ]           (69) 
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Table 2:  Comparison of Absolute Error of Different Techniques for Example 2. 

X Exact 

Solution 

ELADM MLADM LADM Absolute Error 

of ELADM 

Absolute Error 

of MLADM 

Absolute Error of 

LADM 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.0999996 

0.1999945 

0.2999741 

0.4999998 

0.4997565 

0.5995409 

0.6991398 

0.7984976 

0.8974442 

0.9961249 

0 

0.10002032 

0.20028531 

0.3012159 

0.40121889 

0.50233235 

0.60386045 

0.70670132 

0.80867556 

0.91202024 

1.01603733 

0 

0.1999961 

0.1999938 

0.2999745 

0.4999995 

0.4997559 

0.5994937 

0.6990619 

0.7983994 

0.8974362 

0.9960909 

0 

3.913× 10−7 

6.3× 10−6 

3.241× 10−5 

1.002× 10−4 

2.442× 10−4 

5.063× 10−4 

9.401× 10−4 

1.600× 10−3 

2.649× 10−3 

3.920× 10−3 

0 

2.032× 10−5 

1.653× 10−4 

5.229× 10−4 

1.219× 10−3 

2.332× 10−3 

3.905× 10−3 

5.971× 10−3 

8.757× 10−3 

0.012020243 

0.0160433 

0 

3.91× 10−7 

6.3× 10−6 

3.341× 10−5 

1.001× 10−4 

2.443× 10−4 

5.133× 10−4 

9.413× 10−4 

1.601× 10−3 

2.643× 10−3 

3.913× 10−3 
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The nonlinear term  𝐹(𝑢(𝑥)) = 𝑢2(𝑥) is decomposed by the formula 

given in Equation (5). The continuous algorithm gives the relation of both 

section of Equation (69): 

                       ℒ[𝑢0(𝑥)] =  ℒ [𝑥2 +  
1

10
𝑥5 ]                                 (70) 

In general,  

               ℒ[𝑢𝑛+1(𝑥)] =  −
1

2
ℒ[𝐴𝑛(𝑥)]      𝑛 ≥ 1                    (71) 

The translation of inverse Laplace to the above iterative steps means that: 

                         𝑢0(𝑥) =  𝑥2 + 
1

10
𝑥5                                  (72) 

                             𝑢1(𝑥) = −
𝑥4

8
−

𝑥10

800
−

8𝑥7

315
                             (73) 

                𝑢2(𝑥) =
𝑥6

64
+

2101𝑥12

4435200
+

191𝑥9

40320
+

𝑥15

64000
                 (74) 

and so forth. 

Consequently, thus the solution comes in the form of: 𝑢(𝑥) = 𝑥2 +
𝑥5

10
−

𝑥4

8
−

𝑥10

800
−

8𝑥7

315
+

𝑥6

64
+

2101𝑥12

4435200
+

191𝑥9

40320
+

𝑥15

64000
 

Case II: MLADM 

The same example is now solved by Modified Laplace Adomian 

decomposition method. Applying transformation to Laplace on both sides 

of Equation (67): 

            ℒ[𝑢(𝑥)] = ℒ [𝑥2 +  
1

10
𝑥5] −

1

2
 ℒ[𝑢2(𝑥)]                    (75) 

The approach assumes the series function solution 𝑢(𝑥) is: 

    ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [𝑥2 +  

1

10
𝑥5 ] −

1

2
ℒ[∑ 𝐴𝑛(𝑥)∞

𝑛=0 ]            (76) 

Applying an inverse transform of Laplace on both sides of Equation (76): 

  ℒ−1[ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ]]=ℒ−1 [ ℒ [𝑥2 + 

1

10
𝑥5 ]] − ℒ−1 [

1

2
ℒ[∑ 𝐴𝑛(𝑥)∞

𝑛=0 ]]     

(77) 

The nonlinear expression 𝐹(𝑢(𝑥)) =𝑢2(𝑥) is broken down using the 

algorithm given by Equation (5). The continuous algorithm makes the 

comparison of both sides of Equation (77): 

                                            𝑢0(𝑥) = 𝑥2                                                  (78) 

                   𝑢1(𝑥) =
1

10
𝑥5 − ℒ−1 [

1

2
ℒ[𝐴0(𝑥)]]                          (79) 

In general, 

                         𝑢𝑛+1(𝑥) = −ℒ−𝟏 [
1

2
ℒ[𝐴𝑛(𝑥)]]     𝑛 ≥ 1                      (80) 

                                         𝑢1(𝑥) =
𝑥5

10
− 𝑥3                                              (81) 
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                                        𝑢2(𝑥) = −
7𝑥6

20
+

5𝑥4

2
                                         (82) 

Consequently, the solution takes the form of: 𝑢(𝑥) = 𝑥2 +
𝑥5

10
− 𝑥3 −

7𝑥6

20
+

5𝑥4

2
 

Case III: ELADM 

In this case we will take the same example and solve this by 

Enhanced Laplace Adomian decomposition method. Applying 

transformation to Laplace on both sides of Equation (67): 

            ℒ[𝑢(𝑥)] = ℒ [𝑥2 +  
1

10
𝑥5] −

1

2
 ℒ[𝑢2(𝑥)]                          (83) 

The approach assumes that the series function solution is 𝑢(𝑥): 

   ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ] =  ℒ [𝑥2 +  

1

10
𝑥5 ] −

1

2
ℒ[∑ 𝐴𝑛(𝑥)∞

𝑛=0 ]              (84) 

Applying the inverse transform of Laplace on both sides of Equation (84)  

  ℒ−1[ℒ[∑ 𝑢𝑛(𝑥)∞
𝑛=0 ]]=ℒ−1 [ ℒ [𝑥2 + 

1

10
𝑥5 ]] − ℒ−1 [

1

2
ℒ[∑ 𝐴𝑛(𝑥)∞

𝑛=0 ]]  

(85) 

 The nonlinear term 𝐹(𝑢(𝑥)) = 𝑢2(𝑥) is decomposed with the formula 

given by Equation (5). The continuous algorithm makes a comparison of 

both sides of Equation (85): 

                                     𝑢0(𝑥) = 𝑥2                                                 (86) 

                   𝑢1(𝑥) =
1

10
𝑥5 − ℒ−1 [

1

2
ℒ[𝐴0(𝑥)]]                           (87) 

In general, 

                       𝑢𝑛+1(𝑥) = −ℒ−𝟏 [
1

2
ℒ[𝐴𝑛(𝑥)]]      𝑛 ≥ 1                     (88) 

                                    𝑢1(𝑥) =
𝑥5

10
−

𝑥4

8
                                          (89) 

                                𝑢2(𝑥) = −
𝑥7

80
+

𝑥6

64
                                      (90) 

 and so forth.     

Therefore, the solution comes in the form of: 𝑢(𝑥) = 𝑥2 +
𝑥5

10
−

𝑥4

8
−

𝑥7

80
+

𝑥6

64
 

The particular solution of Laplace Adomian decomposition 

method based on Newton Raphson formula and Modified Laplace 

Adomian Decomposition method and the one result by our strategy 

corresponding to the different x values are show in Table 3 and seen in 

Figure 3. The absolute error set out in the table acknowledges that the 

solutions obtained by our technique ELADM are very much similar to the 

exact solution. 
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Table 3:  Comparison of Absolute Error of Different Techniques for Example 3 

X Exact 

Solution 

ELADM MLADM LADM Absolute 

Error of 

ELADM 

Absolute 

Error of 

MLADM 

Absolute Error 

of LADM 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 

0.0025 

0.01 

0.0225 

0.04 

0.0625 

0.09 

0.1225 

0.16 

0.2025 

0.25 

0 

0.0043023 

0.0295144 

0.022512 

0.048334 

0.0621125 

0.0892395 

0.1212012 

0.158752 

0.1993035 

0.2469844 

0 

2.41× 10−3 

9.32× 10−3 

0.02044232 

0.040096 

0.05733203 

0.08326 

0.1170231 

0.159604 

0.21335883 

0.278913 

0 

0.0027302 

0.050743 

0.022572 

0.3983303 

0.062115 

0.0924423 

0.1212221 

0.157952 

0.1993847 

0.2454645 

0 

7.67× 10−7 

1.173× 10−5 

5.632× 10−5 

1.68× 10−4 

3.934× 10−4 

7.783× 10−4 

1.352× 10−3 

2.133× 10−3 

3.199× 10−3 

4.540× 10−3 

0 

1.094× 10−4 

7.494× 10−4 

2.11× 10−3 

3.990× 10−3 

5.853× 10−3 

6.822× 10−3 

5.582× 10−3 

4.096× 10−4 

0.0103583 

0.0390625 

0 

7.498× 10−7 

0.0407338 

5.5634× 10−5 

0.36337503 

3.9344× 10−4 

7.6555× 10−4 

1.3542× 10−3 

2.1531× 10−3 

3.2433× 10−3 

4.6343× 10−3 
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Figure 3:  Comparison of Exact Solution and Approximate Solution for 

Example 3 

Conclusion 

In this research paper, we have presented the combination of two 

powerful modifications for solving Nonlinear Volterra integral equations, 

which are known as Enhanced Laplace Adomian decomposition method. 

The method that has been proposed in this research is capable of handling 

a wide class of nonlinear Volterra integral equation. It is noted that 

ELADM minimize the computational work as compared to existing 

modifications in ADM like LADM and MLADM. The solution illustrated 

in the form of tables and figures indicate that the ELADM has a good 

approximation to the exact solution and has less absolute error as 

compared to that of LADM and MLADM. It is also observed that while 

implementing the techniques in solving non-linear Volterra integral 

equation the LADM outperforms MLADM. However our proposed 

Enhanced Laplace Adomian Decomposition method performs better as 

compared to both LADM and MLADM for all considered cases. Therefore 

we can say that the proposed ELADM is a more generally efficient and 

effective method for solving non-linear Volterra integral equations. It is 

also worth mentioning that the feature of the proposed approach is to 
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demonstrate a successful convergence of the solution. Thus the proposed 

method is easily implemented and manifestly shows the accuracy of 

solution. 

The completion of this research led to an understanding of many 

topics, such as the nonlinear Volterra integro differential equation, that 

require further investigation. Despite the better performance, an attempt 

should be made to increase the consistency of the solution. The definition 

of linear or nonlinear operators and the use of an alternative transformation 

are possible areas for this to be explored. The Adomian polynomials could 

also be examined further. This idea of integrating the strong concepts of 

individual methods may be used to examine the challenges of convergence 

and the efficiency of other classical techniques. 
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