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Abstract 

A noisy signal is transformed into another signal that exhibits fluctuations, called 

signal fluctuation. This fluctuation is a common challenge in signal processing. 

In this article, we present a mesh-free Local Meshless Scheme (LMC) for 

numerically solving the Euler-Lagrange Partial Differential Equation (EL-PDE) 

associated with the Total Variation (TV)-based model designed to remove 

additive noise from given data signals. This method employs the Multi-quadric 

Radial Basis Function (MQ-RBF) as its basis function. The features of this 

approach effectively eliminate fluctuations from the noisy signals by leveraging 

meshless applications. Experimental results demonstrate that the proposed LMC 

exhibits superior performance in terms of Signal to Noise Ratio (SNR) when 

compared to conventional methods and the Global Meshless Scheme (GMS), 

across various basis functions. Moreover, the results indicate that the LMCA is 

faster regarding computation time (CUP time) and requires fewer iterations for 

convergence than both the conventional method and the GMS. 

Keywords: Euler Lagrange Partial Differential Equation; Additive Noise; Total 

Variation-Regularization; Signal to Noise Ratio; Radial Basis Function 

Interpolation; Multi-quadric Radial Basis Function; Local Meshless Scheme; 

Global Meshless Scheme. 

Introduction 

Signal processing is a field of engineering and computer vision 

that focuses on modifying analyzing, and synthesizing signals. Signals can 

be any spatial-varying or time-varying quantity such as audio signals, 

images, or sensor data. The main goals of signal processing are to extract 

useful information, improve signal quality, and transform signals into a 

more desirable form. Signal processing techniques are applied in various 

fields, including telecommunications, audio and video processing, speech 

recognition, and control systems. Over the past few decades, a lot of 

research has been done on signal denoising, an inverse problem and a 
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highly functional field in image processing and computer vision. In this 

article, we consider a model for removing additive noise, although there 

are various types of noises. This can be modeled as under. 

𝑣0 = 𝑣 +  𝜂,                                              (1) 

Where 𝑣0 represents the provided noisy signal with additive noise η, and 

𝑣 is called true signal, all are expressed on the domain  Ω ∈ 𝑅.2   

Various researchers have proposed various useful numerical 

approaches that have been used to address models related to signal 

denoising associated with additive noise, such as stochastic methods, 

wavelet approaches, and anisotropic diffusion techniques (Li et al., 2018; 

Satapathy et al., 2019;  Naveed et al., 2019;  Kervrann, 2004;  Polzehl & 

Tabelow, 2007; Ramadhan et al., 2017; Luo et al., 2019; Bai & Feng, 

2018). Recently, TV-based models for image restoration have been used 

as PDE-based tools, resulting in many successful restoration outcomes for 

images and signals (Krishnanetb al., 2006; Rudin & Osher, 1994; Rudin 

et al.,1992). Rudin et al. (1992) have proposed the first TV-based model 

for signal and image restoration having additive noise.  

Regardless of the inherent effects of TV regularization, the 

Rudian, Osher and Fatemi (ROF) model efficiently eliminates signal and 

image noise while maintaining image edges (Chan et al., 2006; Osher et 

al., 2005). However, because of its non-linearity and non-differentiability 

characteristics, it also shows certain undesired consequences, like signal 

contrast denoising and time computation Rudin et al., 1992; Osher et al., 

2005;  Chang et al., 2009;  Lysaker et al., 2004 ; Lysaker et al., 2003). 

Rudin et al. (1992) have introduced an artificial time-marching procedure 

for the connected EL-PDE. The TV method involves progressively 

reducing the pixel values in a signal without compromising the resolution. 

The TV-based methods are best suited for signals with regions that are 

piecewise constant.  During the iterations, the signal noise is reduced, and 

if the iterations are not stopped, a constant-valued signal is eventually 

obtained. Thus, in TV based approach we need stopping measures to 

control the over-smoothing of the noisy signal. A few good features of the 

ROF model provide us with a smooth solution for the restoration of signals 

that contain additive noise (Clason et al., 2010). However, this model has 

several flaws because of the non-linearity and non-differentiability of the 

related PDE, which leads to signal problems. However, there is always 

potential for development. To minimize these problems, we therefore 

modify the mesh-free RBF collocation approach in our work. 

In the 1970s, RBF-based methods were formulated to control the 

structural conditions of existing numerical schemes. These processes are 

suitable for dispersed data sources (Jiang et al., 2015). Therefore, rather 

than using a numerical technique, the application may determine the 
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domain's shape. In recent years, RBF techniques have grown significantly 

in both approximation theory and PDEs numerical solution. The RBF 

interpolation process, sometimes referred to as the Collocation methods, 

is the most frequently utilized RBF approach for these types of problems 

(Kansa, 1990a; Kansa, 1990b; Kansa, 1999). The meshless properties of 

RBF schemes keep these schemes best because they need a set of points 

that are required to discretize the continuous domain. RBF approaches 

have proven to be more efficient than. RBF techniques have demonstrated 

superior efficiency compared to FDM (Kansa,1999; Jankowska at al., 

2018; Zerroukat et al., 1998). Pseudo-spectral method (Larsson & 

Fornberg, 2003; Li at al., 2003). The RBF methods are domain-specific 

strategies with various features, such as the finite element approach for 

approximating the solution of nonlinear equations. See (Jankowska at al., 

2018; Parand & Rad, 2012; Ordokhani & Razzaghi 2008; Houstis, 1978; 

Eslahchi at al., 2014; Doha et al., 2013). For further details on RBF 

collocation techniques. RBF techniques can be used both Globally and 

Locally. Corresponding to other traditional techniques, the Global 

Meshless Method can efficiently solve PDEs for a smooth solution due to 

its adaptive properties and computational approach. The Global Meshless 

Method has a primary disadvantage in its global structure-property, 

leading to the use of full matrices in Global Meshless Scheme due to PDEs 

discretization, resulting in constant ill conditions (Kansa, 1990) which 

sometimes produces issues in smooth solution in PDEs. To address the 

sensitivity of the shape parameter and the ill-conditioning of the Global 

Meshless Scheme, a new approach known as the LMS has been developed. 

This technique was originally presented in (Sarra, 2011). For diffusion 

problems. It showed improvements in accuracy and efficiency due to its 

local structure property, efficient computational approach, and adaptive 

property (Chenoweth, 2012; Hosseini & Hashemi, 2011). The LMS 

approach has been broadly applied to different engineering and science 

situations due to its convenience (Sarra, 2012; Shen, 2011). The LMS 

method aims to reduce the dimension of the collocation matrix by solving 

multiple small matrices that collocate the overlapping sub-domains of 

influence. Each small matrix has a size equal to the number of points 

within the influence domain of each point. This method has also the 

application of locally adaptive nature and computational efficiency and 

easy mathematical implementation. Motivated by the applications of the 

LMS, we apply the LMS for the approximate solution of EL-PDE 

connected with the ROF model for additive noise removal from signals. 

This meshless scheme will effectively remove the noise from the noisy 

signal and will take less time due to its above-mentioned applications. 
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The paper is arranged as follows: The second part presents the 

relevant work. The first subpart consists of the ROF model for signal 

denoising, whereas the second subpart contains RBF interpolation. The 

third part explores the mesh-based gradient descent numerical approach 

for solving EL-PDE with the ROF model. This section also includes a 

proposed meshless approach LMS for numerically solving EL-PDE 

connected with the ROF model. The fourth part explains the experimental 

results. Finally, the final part provides the paper's conclusions. The 

appendix is presented at the end of this article. 

Related Work 

Total Variation (TV) Based ROF model          

Digital image processing employs TV (Total Variation) 

regularization to effectively reduce noise in images and signals. This 

technique is also essential for addressing inverse problems and performing 

numerical computations. Regularization is particularly valuable because it 

preserves edges while eliminating excessively noisy frequencies from both 

images and signals. Additionally, it is convex. The TV of an image 

𝑣(𝑥, 𝑦) = Ω → ℜ2 is defined as follows: 

𝑇𝑉(𝑣) = ∫ |∇𝑣|
Ω

𝑑𝑥𝑑𝑦    𝑤ℎ𝑒𝑟𝑒   |∇𝑣| = √𝑣𝑥
2 + 𝑣𝑦

2.              (2) 

The first TV-based model for denoising data from noisy signals 

impacted by additive noise was presented by Rudin et al. (ROF). They 

employed total variation (TV) regularization as a technique for this 

process. Their methodology yielded significant restoration results. The TV 

regularization method offers a minimization technique for the model 

presented in Equation (1). 

𝑚𝑖𝑛
𝑣

{𝐸(𝑣)} = 𝑚𝑖𝑛
𝑣

∫ |𝛻𝑣(𝑥, 𝑦)|
𝛺

𝑑𝛺 + 𝜆 ∫ (𝑣 − 𝑣0)
𝛺

2

𝑑𝛺,         (3) 

Where    |∇𝑣| = √𝑣𝑥
2 + 𝑣𝑦

2. 

The first term refers to the TV regularization of 𝐸(𝑣) while the 

subsequent term indicates the data fitting component. The parmeter 𝜆 is 

the regularization parameter and is used to strike a balance between the 

denoising and smoothing of the denoised signal, which is usually affected 

by the amount of noise present. The EL-PDE connected with ROF model 

is provided in the following from. 

−∇ [
∇𝑣

|∇𝑣|2 + 𝜀
] + 2𝜆(𝑣 − 𝑣0) = 0 𝑖𝑛 Ω 𝑓𝑜𝑟 𝜖 > 0, (𝑥, 𝑦) ∈ ℜ,      (4) 

or 
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−
𝜕

𝜕𝑥

(

 
𝑣𝑥

√𝑣𝑥
2 + 𝑣𝑦

2

)

 +
𝜕

𝜕𝑦

(

 
𝑣𝑦

√𝑣𝑥
2 + 𝑣𝑦

2

)

 + 2𝜆(𝑣 − 𝑣0) = 0 𝑖𝑛 Ω,     (5) 

with 
𝜕𝑣

𝜕𝑛
= 0 on the boundary of Ω = 𝜕Ω. The time-dependent EL-

PDE of Equation (5) is presented as under. 

𝑣𝑡 = ∇ [
∇𝑣

|∇𝑣|2 + 𝜀
] + 2𝜆(𝑣 − 𝑣0)  𝑖𝑛 Ω 𝑓𝑜𝑟  𝑡 > 0, (𝑥, 𝑦) ∈ ℜ,     (6) 

or 

𝜕𝑣

𝜕𝑡
=

𝜕

𝜕𝑥

(

 
𝑣𝑥

√𝑣𝑥
2 + 𝑣𝑦

2

)

 +
𝜕

𝜕𝑦

(

 
𝑣𝑦

√𝑣𝑥
2 + 𝑣𝑦

2

)

 + 2𝜆(𝑣 − 𝑣0) = 0,    (7) 

in Ω 𝑓𝑜𝑟 𝑡 > 0, (𝑥, 𝑦) ∈ ℜ. 

For the given 𝑣(𝑥, 𝑦, 0)  and also 
𝜕𝑣

𝜕𝑛
= 0  on 𝜕Ω . For further 

information, see Chambolle et al., (2010). 

Radial Basis Function Interpolation 

Let us discuss the RBF approach (Khan et al., 2017). RBF is a 

real-valued function whose value depends only on the distance from the 

origin, so that 𝜑(𝑥) = 𝜑(‖𝑥‖), or alternatively on the distance from some 

other point c, called center so that (𝜑(𝑥, 𝑐) = 𝜑(‖𝑥 − 𝑐‖)). Any function 

that satisfies the property 𝜑(𝑥) = 𝜑(‖𝑥‖)  is called the radial basis 

function. Radial Basis functions are Gaussian functions, multi-quadric 

functions and inverse multi-quadric functions. RBF method monographs 

(Shan et al., 2009) generally contain information on RBF methods. For 

specific data points or evaluation points {𝑥𝑖, 𝑇𝑖}𝑖=1
𝑁 , local RBF is 

equivalent to the global RBF approach. The global RBF approach allows 

us to freely choose the center points, which is the only difference. 

However, choosing the center locations is restricted when using the local 

RBF approach. To do this, we require the stencil value and one evaluation 

point, which is used to measure the center values (Micchelli, 1984). But 

for {𝑥𝑖,𝑗, 𝑇𝑖,𝑗}𝑗=1

𝑀
 Center points and evaluation points. 

𝑣(𝑥) = ∑𝑃𝑖𝜑 (‖𝑥 − 𝑥𝑗
𝑐‖

2
) ,

𝑁

𝑖=1

                                (8) 

Which results in 𝐵 = [𝜑𝑖𝑗] = (𝐵𝑖𝑗) ∈ 𝑅𝑀×𝑀 as given below: 
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𝐵 = [

𝜑(‖𝑥1
𝑐 − 𝑥1

𝑐‖2), 𝜑(‖𝑥1
𝑐 − 𝑥2

𝑐‖2)⋯𝜑(‖𝑥1
𝑐 − 𝑥𝑀

𝑐 ‖2)

𝜑(‖𝑥2
𝑐 − 𝑥1

𝑐‖2), 𝜑(‖𝑥2
𝑐 − 𝑥2

𝑐‖2)⋯𝜑(‖𝑥2
𝑐 − 𝑥𝑀

𝑐 ‖2)
⋮
𝜑(‖𝑥𝑀

𝑐 − 𝑥1
𝑐‖2), 𝜑(‖𝑥𝑀

𝑐 − 𝑥2
𝑐‖2)⋯𝜑(‖𝑥𝑀

𝑐 − 𝑥𝑀
𝑐 ‖2)

],       (9) 

Where 𝑃 = (𝑃1, 𝑃2, … , 𝑃𝑛)𝑡,  𝜔𝑜 = (𝜔𝑜(𝑥1),𝜔𝑜(𝑥2),… , 𝜔𝑜(𝑥𝑛))
𝑡
,  are 

unknown (to be determined) and known matrices of orders 𝑀 × 1. So 

Equation (8) can be rewritten as under.  

[

𝜑(‖𝑥1
𝑐 − 𝑥1

𝑐‖2), 𝜑(‖𝑥1
𝑐 − 𝑥2

𝑐‖2)⋯𝜑(‖𝑥1
𝑐 − 𝑥𝑀

𝑐 ‖2)

𝜑(‖𝑥2
𝑐 − 𝑥1

𝑐‖2), 𝜑(‖𝑥2
𝑐 − 𝑥2

𝑐‖2)⋯𝜑(‖𝑥2
𝑐 − 𝑥𝑀

𝑐 ‖2)
⋮
𝜑(‖𝑥𝑀

𝑐 − 𝑥1
𝑐‖2), 𝜑(‖𝑥𝑀

𝑐 − 𝑥2
𝑐‖2)⋯ 𝜑(‖𝑥𝑀

𝑐 − 𝑥𝑀
𝑐 ‖2)

] [

𝑃1

𝑃2

⋮
𝑃𝑁

] = [

𝜔𝑜(𝑥1)

𝜔𝑜(𝑥2)
⋮
𝜔𝑜(𝑥𝑁)

] . (10) 

Equation (10) can be rewritten as under. 

 𝐵𝑃 = 𝜔0,                                                 (11) 

Where𝐵 is called 𝑀 × 𝑀 system matrix So Equation (11) can be written 

as under.  

𝑃 = 𝐵−1𝜔𝑜                                               (12) 

The invertible matrix 𝐵  (non-singular matrix) depends upon the 

basis function used in RBF used in 𝐵. Now for {𝑥𝑗
𝑐 , 𝜔0𝑗

𝑜}
𝑗=1

𝑀
  stencil points 

and {𝑥𝑖, 𝜔0𝑗
𝑜}

𝑖=1

𝑁
 evaluation points. The interpolation condition is for  

𝑉(𝑥) = ∑𝑃𝑗

𝑁

𝑖=1

𝜑 (‖𝑥𝑖 − 𝑥𝑗
𝑐‖

2
) = 𝜔𝑜𝑖

                     (13) 

𝑖 = 1,2,3. . . 𝑁 𝑗 = 1,2,3. . . 𝑀 and 𝑀 < 𝑁. 

So (13) results in the following system of equations. 

𝐾𝑃 = 𝜔𝑜.                                                      (14) 

Here 𝐾 = [𝑘𝑖,𝑗] = [𝜙 (‖𝑥𝑖 − 𝑥𝑗
𝑐‖

2
)]   for 𝑖 = 1,2,3, . . . , 𝑁  and 𝑗 =

1,2,3, . . . , 𝑀and is defined in given matrix form. 

𝐾 = [

𝜑(‖𝑥1 − 𝑥1
𝑐‖2), 𝜑(‖𝑥1 − 𝑥2

𝑐‖2)⋯𝜑(‖𝑥1 − 𝑥𝑀
𝑐 ‖2)

𝜑(‖𝑥2 − 𝑥1
𝑐‖2), 𝜑(‖𝑥2 − 𝑥2

𝑐‖2)⋯𝜑(‖𝑥2 − 𝑥𝑀
𝑐 ‖2)

⋮
𝜑(‖𝑥𝑁 − 𝑥1

𝑐‖2), 𝜑(‖𝑥𝑁 − 𝑥2
𝑐‖2)⋯𝜑(‖𝑥𝑁 − 𝑥𝑀

𝑐 ‖2)

]      (15) 

with 𝑁 × 𝑀 order matrix is called an evaluation matrix. Also 𝑃 =

(𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑀)𝑡and 𝜔𝑜 = (𝜔𝑜(𝑥1),𝜔𝑜(𝑥2),𝜔𝑜(𝑥3), . . . , 𝜔𝑜(𝑥𝑛))
𝑡
.  

So    

𝜔𝑜 = 𝐾𝑃.                                                  (16)                                                                           

Put the value of 𝑃 from Equation (12) in Equation (16), we have 

𝜔𝑎𝑝𝑝𝑟𝑜𝑥 = 𝐾𝐵−1𝜔𝑜.                                          (17)    

Let 
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                                                 𝐾𝐵−1 = 𝐸.                                                (18) 

Then Equation (17) implies that 

𝜔𝑎𝑝𝑝𝑟𝑜𝑥 = 𝐸𝜔𝑜.                                                 (19)                                                                                             

Equation (19) 𝑁 × 1  system and is called the approximation 

solution of the function 𝜔. for more information, see (Khan et al., 2017).  

Numerical Schemes for Solution of ROF Model 

Traditional approach for ROF Model (M1) 

 The ROF model is defined as a constrained optimization problem 

presented in Equation (8). 

 𝑚𝑖𝑛
𝑣

{𝐸(𝑣)} = 𝑚𝑖𝑛
𝑣

∫ |𝛻𝑣(𝑥, 𝑦)|
𝛺

𝑑𝛺 + 𝜆 ∫ (𝑣 − 𝑣0)𝛺

2
𝑑𝛺.     (20) 

Here 𝑣0  is provided degraded signal, v represents the denoised 

signal and λ is a regularization parameter, a constant that determines the 

tradeoff between two terms. The denoised signal v is seen utilizing given 

approach. 

𝑣𝑖𝑗
𝑘+𝑗

= 𝑣𝑖𝑗
𝑘 +

𝛥𝜏

ℏ

[
 
 
 

𝛻𝑥
−

(

 
𝛻𝑥

−𝑣𝑖𝑗
𝑘

√(𝛻𝑥
+𝑣𝑖𝑗

𝑘 )
2
+ (𝑚1(𝛻𝑦

+𝑣𝑖𝑗
𝑘 ), (𝛻𝑦

−𝑣𝑖𝑗
𝑘 )

2
)
)

 

+

(

 𝛻𝑦
−

𝛻𝑦
−𝑣𝑖𝑗

𝑘

√(𝛻𝑦
+𝑣𝑖𝑗

𝑘 )
2
+ (𝑚2(𝛻𝑥

+𝑣𝑖𝑗
𝑘 ), (𝛻𝑥

−𝑣𝑖𝑗
𝑘 )

2
)
)

 

]
 
 
 

 

−𝛥𝜏𝜆 (𝑣𝑖𝑗
𝑘 − 𝑧0(𝑖ℏ, 𝑗ℏ)).                                                         (21)                                                                                                       

For  =  1, 2 , … . ,𝑚1 , 𝑗 =  1,2,… . . , 𝑚2 with boundary conditions 𝑣0𝑗 =

𝑣1𝑗,     𝑣𝑚1𝑗 = 𝑣𝑚1−1𝑗,    𝑣𝑖0 = 𝑣𝑖𝑚2
= 𝑣𝑖𝑚2−1. Where  

𝛻𝑥
± = ±[𝑣𝑖±1,𝑗 − 𝑣𝑖,𝑗],        𝛻𝑦

± = ±[𝑣𝑖,𝑗±1 − 𝑣𝑖,𝑗],      (22) 

|𝛻𝑥(𝑣𝑖,𝑗)|𝜖 = √𝛻𝑥
+ + (𝑣𝑖,𝑗)

2
+ (𝑚1[𝑣𝑦

+(𝑣𝑖,𝑗, 𝛻𝑦
−𝑣𝑖,𝑗)])

2
+ 𝜖, (23) 

|𝛻𝑦(𝑣𝑖,𝑗)|𝜖 = √𝛻𝑦
+ + (𝑣𝑖,𝑗)

2
+ (𝑚1[𝑣𝑥

+(𝑣𝑖,𝑗, 𝛻𝑥
−𝑣𝑖,𝑗)])

2
+ 𝜖, (24) 

with 𝑚[𝛼, 𝛽] = (
𝑠𝑖𝑔𝑛(𝛼)+𝑠𝑖𝑔𝑛(𝛽)

2
) .𝑚𝑖𝑛( |𝛼|, |𝛽)|.  For more details, see 

Rudin et al. (1992). 

Proposed Local Meshless Scheme (M2) 

In this section, we apply the LMC on EL-PDE connected with 

ROF to overcome associated the difficulties with EL-PDE and to obtain a 

smooth solution concerning signal restoration. Assume that {𝑥𝑖}𝑖=1
𝑁  is the 
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N different data points on the domain 𝛺 ⊆ 𝑅2.  Thus, the following 

equation corresponds to for every RBF,𝜑(𝑟) = ‖𝑟‖2𝑖𝑛𝑅2i.e. 𝑟 = (𝑥, 𝑦). 

For {𝑥𝑐𝑗}𝑗=1

𝑁𝑐 ,   given 𝑁𝑐  centers, the RBF can be written without the 

demand for a polynomial representation.  

𝑣(𝑥) = ∑𝑝𝑗𝜑 (‖𝑥 − 𝑥𝑐𝑗‖2
)

𝑁𝐶

𝑖=1

, for i, j=1,2,3 ,...,N𝑐 .         (25) 

Here 𝑝𝑗is coefficient in RBF and can be defined as under.   

  𝑆(𝑥𝑖) = 𝑣0,                                                        (26) 

a collection of points that frequently line up with centers. 

𝐻𝑝 = 𝑣0,                                                           (27) 

Where 𝑝 = (𝑝1, 𝑝2, 𝑝3 … . 𝑝𝑁𝐶
)
𝑡

 is unknown and 𝑣0 =

(𝑣01, 𝑣02, 𝑣03, ……𝑣0𝑁𝑐
)
𝑡
 is known are 𝑁𝐶 × 1 matrices.The interpolation 

matrix, or matrix H, is provided by 

𝐻 = [𝜑𝑖𝑗] = [(‖𝑥𝑖 − 𝑥𝑐𝑗‖2
)]

1≤𝑖,𝑗≤𝑁𝐶

.               (28)  

Since this system matrix 𝐻  is always a positive definite matrix, it is 

𝑁𝑐 × 𝑁𝑐 square and always invertible (Levesley, 2004; Madych & Nelson, 

1983; Jiang & Zhang 2013). Consequently we obtain: 

𝑝 = 𝐻−1𝑣0,                                                   (29)  

Again, Equation (25) is used to estimate the interplant at 𝑁 inspection 

points ({𝑥𝑖}𝑖=1
𝑁 ) by producing the 𝑁 × 𝑁𝑐evaluation matrix𝐾, which is 

provided below. 

𝐾 = [𝜑𝑖𝑗] = [𝜑 (‖𝑥𝑖 − 𝑥𝑐𝑗‖2
)] 𝑓𝑜𝑟𝑖 = 1,2, . . . 𝑁𝑗 = 1,2,… .𝑁𝑐 ,     

𝑣 = 𝐾𝑣0.                                                        (30)       

Now, from Equation (29) and Equation (30), the following Equation is 

obtained. 

𝑣 = 𝐾𝐻−1 𝑣0, 
or 

𝑣 = 𝑀𝑣0,    where   𝑀 = 𝐾𝐻−1,                          (31)  

Where, when v is a matrix of rank𝑁𝑐 × 1 ., provides an approximate 

solution at any point in 𝛺. 

The time-dependent PDE from the ROF model Equation (7) is 

redefined as given. 
𝑑𝑣

𝑑𝑡
=

(𝑣𝑥𝑥+𝑣𝑦𝑦)(𝑣𝑥
2+𝑣𝑦

2)−(2𝑣𝑥𝑣𝑦𝑣𝑥𝑦+𝑣𝑥
2𝑣𝑥𝑥+𝑣𝑦

2𝑣𝑦𝑦)

(𝑣𝑥
2+𝑣𝑦

2)
3
2

+ 2𝜆(𝑣 − 𝑣0).    

          (32) 

The implicit gradient decent procedure is then used on the 

Equation (32) and thus we acquire the subsequent equation.  
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𝑣(𝑛+1)−𝑣(𝑛)

𝑑𝑡
=

(𝑣𝑥𝑥
(𝑛)

+𝑣𝑦𝑦
(𝑛)

)((𝑣𝑥
2)(𝑛)+(𝑣𝑦

2)(𝑛))−(2𝑣𝑥
(𝑛)

𝑣𝑦
(𝑛)

(𝑣𝑥
(𝑛)

𝑣𝑦+𝑣𝑥𝑣𝑦
(𝑛)

)+𝑣𝑥
2𝑣𝑥𝑥

(𝑛)
+𝑣𝑦

2𝑣𝑦𝑦
(𝑛)

)

((𝑣𝑥
2)(𝑛)+(𝑣𝑦

2)(𝑛))
3
2

         (33)    

−2𝜆(𝑣(𝑛))(𝑣(𝑛) − 𝑣0
0). 

We apply Equation (31) in Equation (33) which result in nonlinear system 

of Equations which is solved by the LMC. The Gauss–Jacobi iterative 

algorithm is employed on the LMC based resultant system equations 

which is written as under. 

𝐺(𝑣(𝑛))𝑣(𝑛+1) = 𝐺(𝑣(𝑛))𝑣(𝑛) + 𝑑𝑡 [(𝑣𝑥𝑥
(𝑛)

+ 𝑣𝑦𝑦
(𝑛)

) ((𝑣𝑥
2)(𝑛) +

(𝑣𝑦
2)(𝑛)) − (2𝑣𝑥

(𝑛)
𝑣𝑦

(𝑛)
(𝑣𝑥

(𝑛)
𝑣𝑦 + 𝑣𝑥𝑣𝑦

(𝑛)
) + 𝑣𝑥

2𝑣𝑥𝑥
(𝑛)

+ 𝑣𝑦
2𝑣𝑦𝑦

(𝑛)
)] −

𝐺(𝑣(𝑛))𝑑𝑡[2𝜆(𝑣(𝑛))(𝑣(𝑛) − 𝑣0
0)],                                                    (34) 

where 𝐺(𝑣) = (𝑣𝑥
2 + 𝑣𝑦

2)
3

2, 𝑣𝑥 = 𝜔𝑥𝑣0, 𝑣 = 𝜔𝑦𝑣0, 𝑣𝑥𝑥 = 𝜔𝑥𝑥𝑣0, 𝑣𝑦𝑦 =

𝜔𝑦𝑦𝑣0,
𝜕𝑣

𝜕𝑛
= 𝑣𝑛 = 𝜔𝑛𝑣0, 𝑣0

0 = 𝑣0.  

The suggested LMC M2 allows for more flexibility in selecting an RBF, 

as it does not always need to satisfy Equation (34). The most widely used 

RBF in collocation methods is Multi-Quadric (MQ). The MQ-RBF (Jiang 

& Zhang 2013; Guo et al., 2016) can provide accurate spectral results with 

the right shape parameter c. The shape parameter c in RBF recreates a 

crucial role in the smoothness of our method M2. Our proposed 

methodology LMCA improves the accuracy and smoothness of signal 

denoising with additive noise when c is optimal. This LMC M2 approach 

adjusts the parameters c and λ involved based on the signal size and noise 

level. Here, “head and trail” method is used to select the optimal values of 

parameters involved. 

Algorithm 1:   

RBF Interpolation: 

1. Let 𝑁𝑐 be the center pixel points and let 𝑁 be the total number of 

𝑛  pixel points that are employed with stencil points 𝑛1 

surrounding the center point 𝑥𝑐𝑛  in the RBF approximation 

process. 

2. Compute 𝑝 using MQ-RBF and Equation (29). 

3. Utilizing Equation (31) through MQ-RBF, calculate𝑣. 

TV Regularization: 

4. Decide on the weights for 𝜀, ℎ, 𝑑𝑡, 𝜆, and 𝑣0. 
5. Introduce 𝑛as 𝑁𝑐 number of data pixel centers i.e., 𝑥𝑐1 ≤ 𝑥𝑐2 ≤

. . . . . 𝑥𝑐𝑛, next pick 𝑛 = 0. 
6. Substitute MQ-RBF utilizing Equation (31) in Equation (34). 
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7. Select 𝑛 = 𝑛 + 1 for every data center point 𝑥𝑐𝑖  for1 ≤ 𝑖 ≤ 𝑁, 
and then use LMC with 𝑣0

0 = 𝑣0  to calculate 𝑣(𝑛+1)  in 

accordance with Equation (34). 

8. 
‖𝑣(𝑛+1)−𝑣(𝑛)‖

‖𝑣(𝑛)‖
≤ 𝜀 = 10−5 Procedure is employed to stop the 

iterative method and proceed to Step (10). 

9. Go back to step (7).  

10. End. 

11. Result 𝑣 = 𝑣(𝑛+1).  

Results and Discussion 

This section includes experimental results and an analysis of the 

suggested scheme, LMC M2 performance. Signals are utilized to evaluate 

the M1 and M2 methods' performance.  In this work, our focus is on signal 

denoised with additive Gaussian noise (mean 𝑝 = 0, variance𝐿1) and salt 

and pepper noise (mean 𝑝 = 0,  variance 𝐿2 ).  To verify the signal 

restoration outcomes of the suggested LMC M2 and compare them to the 

traditional mesh-based approach M1. We choose a signal size with 𝑥𝑐𝑖 , 
and apply the suggested meshless approach M2.signal-to-noise ratio 

(SNR) is taken into consideration to quantify the denoised signal. This 

measure is widely used to evaluate the quality of the restored signal. SNR 

is calculated as. 

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10
‖𝑣−𝑣0‖

‖𝑛−𝑛0‖
,                                  (35)   

Where B is the final denoised image, 𝑀×𝑁 denotes the image data size, 

and H is the original image that is provided. The greater the SNR value to 

better the restoration result. The suggested scheme M2 faster convergence 

achievement and the stoppage of the iterative procedure are represented 

by the following formula. 

‖𝑣(𝑛+1) − 𝑣(𝑛)‖

‖𝑣(𝑛)‖
≤ 𝜀,                                      (36) 

Where 𝜀 shows the highest permitted error. Here, it is set to be 10−4.  In 

this section the outcomes of techniques M1 and M2 are tested and 

compared using the Multi-quadric (MQ) RBF. For each point(𝑥𝑖 , 𝑦𝑗), 

Multi-quadric (MQ) RBF is expressed in the downward equation. 

𝜙𝑗(𝑥, 𝑦) = √𝑐2 + 𝑟𝑗
2 = √𝑐2 + ((𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2
),   (37)               

Where   𝑟𝑗
2 =(𝑥 −𝑥𝑖)

2 + (𝑦 −𝑦𝑗)
2. 

Also, for every selected point (𝑥𝑖, 𝑦𝑗)   has the following IMQ-RBF 

expression: 
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𝜙𝑗(𝑥, 𝑦) =

(

 
1

√𝑐2 + ((𝑥 −𝑥𝑖)
2 + (𝑦 −𝑦𝑗)

2)
)

              (38) 

Similarly, for every selected point (𝑥𝑖, 𝑦𝑗) has the following Gaussian 

expression: 

𝜙𝑗(𝑥, 𝑦) = ((𝑒)−𝑐2 (𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑗)

2
)                         (39) 

Experiment 1 

This test compares the implementation of two distinct noise 

removal techniques, M1 and M2, for restoring signals deteriorated by 

additive Gaussian noise and Salt and Pepper noise with noise levels of 

𝐿1 = 27%  and 𝐿2 = 32% , respectively. These actual and degraded 

signals are given in Figures 1(a), 1(b), 1(c), and 1(d), respectively. The  

signal  reformed signals using M1 and M2 are shown in Figures 1(e), 1(f), 

1(g), and 1(f), respectively, for comparison. Although M1 repaired the 

signal, the LE-PDE connected with the additive and salt and pepper noises 

removal model in the mesh-based method led to nonlinearity and non-

differentiability, resulting in insufficient restoration outcomes despite the 

use of TV regularization. These results are shown in Figures 1(e) and 1(f). 

On the other hand, M2, which utilizes local meshless applications, 

localization, adaptive natures, and MQ-RBF, delivered excellent signal 

rehabilitation effects compared to M1, as illustrated in Figures 1(g) and 

1(h). Here we take center through the localized method are 80 points. 

Further, Table 1 demonstrates that the signal-to-noise ratio (SNR) values 

of M2 are greater than those of M1, indicating the superior signal 

restoration performance of M2 over M1. Furthermore, M2 required fewer 

iterations and less CPU time to converge than M1, indicating its quicker 

restoration performance due to computational efficiency and easy 

mathematical implementation which are given in Table 2.  

Table 1: SNR values comparison between M1 and M2.  

S.No. 
Signal selected 

from the Image 
Size 

M1 M2 

SNR SNR 

1 110th 512 23.71 24.08 

2 150th 512 24.29 24.73 

Table 2: M1 and M2 comparison regarding the number of iterations and time 

in seconds required for convergence. 

S.No. 
Signal taken 

from the Image 
Size 

M1 M2 

Iter Time(s) Iter Time(s) 

1 110th 512 14 5.05 10 4.06 

2 150th 512 19 8.59 11 5.22 
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(a) True signal 

 
(b) True signal 

 
(c) True and noise signals 
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(d) True and noise signals 

 
(e)  M1 

 
(f)   M1      
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(g) M2 

 
(h) M2 

Figure 1 Signals (a) and (b) show 110th and 150th original signals taken from 

an image, (c) and (d) represent the original and noisy signals having additive 

Gaussian noise 𝑳𝟏 = 𝟐𝟕% and salt and pepper noise 𝑳𝟐 = 𝟑𝟐%, respectively; 

(e) and (f) indicate the original and denoised signals using M1; (g) and (h) 

represent the de-noised signals using LMCA M2 with 𝒄 = 𝟏. 𝟐𝟏and 𝝀 = 𝟏𝟎. 
Here the blue line indicates the original signal while the red line indicates the 

noisy or restored signal. 

Experiment 2 

In this investigation, we experimented with M1 and M2 for signal 

restoration using both the actual signal and a noisy signal with 𝐿1 = 34% 

additive Gaussian noise. The signals are illustrated in Figures 2(a) and 
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2(b). M1 did not perform well in signal restoration due to the mesh-based 

solution of nonlinear and non-differentiable EL- PDE associated with the 

model, as displayed in Figure 2(c). On the other hand, the proposed 

meshless strategy M2 was tested with the same shape parameter c=1.17 

but for two different center points, p=150 and p=200. It was observed that 

selecting more center points resulted in better restoration performance than 

selecting fewer center points. In both cases, the signal restoration results 

by M2 were superior to M1 due to its meshless application mentioned in 

test 1, as presented in Figures 2(d) and 2(e). Table 3 indicates that the SNR 

values of M2 are greater than the M1 value, demonstrating the superior 

signal restoration performance of M2 over M1. The SNR values were also 

greater for center values p=200 than center values p=150 for M2 for the 

same shape parameter, showing better restoration performance with a 

greater number of center points. Additionally, Table 4 shows that the 

number of iterations and CPU time required for convergence of M2 is less 

than M1, representing the faster image restoration of M2 over M1 due to 

the meshless applications discussed in experiment 1. Moreover, the 

number of iterations and CPU time of M2 for higher values of centers 

p=200 are less than the lower values of centers p=150 for the same shape 

parameter, highlighting the quicker signal restoration performance of M2 

for higher values of centers than lower values of centers. 

Table 3: Representation of SNR values of M1 and M2 for image restoration. 

S. No. 
Signal chosen of the 

Image 
Size 

M1 M2 

SNR SNR(p=150) SNR(p=200) 

1 220th 512 24.01 24.67 24.87 

Table 4: Comparison of M1 and M2 regarding number of iterations and CPU 

times in seconds. 

S.No. Signal taken from the Image Size 

M1 M2 

Iter Time(s) 

P=150 p=200 

Iter Time(s) Iter Time(s) 

11 220th 512 20 17.7 14 12.9 9 8.22 
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(a) True signal 

 
(b) True and noise signals 

 
(c)  M1 



 

 

 

 

 

 

 

 

 

 

 

 

 

Total Variation-Based Model For Signal Restoration using Local Meshless             Ahmad et al. 
 

The Sciencetech                       136                    Volume 5, Issue 4, Oct-Dec 2024 

 

 

 

 

 

 

 

 

 
(d)  M2 with p= 150 

 
(e)  M2 with p= 200 

Figure 2: (a) shows the 300th original signal taken from Lena image; 

(b) indicates the original and noisy signal connected to additive Gaussian 

noise 𝑳𝟏 = 𝟑𝟒%; (c) shows the original and restored signals by M1; while (d) 

and (e) represent the original and restored signals by M2 connected with 

centers𝒑 = 𝟏𝟓𝟎and𝒑 = 𝟐𝟎𝟎, respectively. In this case, the red line represents 

the noisy or restored signal, and the blue line represents the original signal. 

The parameter values are 𝒄 = 𝟏. 𝟏𝟔and 𝝀 = 𝟏𝟑. 

Experiment 3 

In this analysis, M2 is compared with M1 for signal restoration 

from noisy signals with Salt and Pepper noise at a noisy level of 𝐿2 =
38%. The real and noisy signals are shown in Figures 3(a) and 3(b). M2 

displayed better and quicker restoration performance than M1 due to the 

meshless application used in M2 over M1. These signals are shown in 

Figures 3(c), 3(d), 3(e), 3(f), and Table 5, respectively. Additionally, the 
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suggested meshless approach M2 experiments on three different basis 

functions: IMQ-RBF, GA-RBF, and MQ-RBF for signal restoration. The 

study found that the signal restoration results achieved using MQ-RBF 

were better than those obtained using the other two basis functions, IMQ-

RBF and GS-RBF, as reported in (Kansa, 1990). Additionally, the results 

produced by GA-RBF were superior to those of IMQ-RBF for M2. These 

findings are illustrated in Figures 3(d), 3(e), 3(f), and Table 5, respectively.  

Table 5: Comparison of SNR values of M1 and M2 which is connected with 

IMQ-RBF, GS-RBF, and MQ-RBF, respectively.   

S.No. Signal selected of the Image Size 
SNR 

M1 M2(IMQ) M2(GA) M2(MQ) 

1 320th 512 24.19 24.70 24.87 25.13 

 

 
(a) True signal 

 
  (b) True and noise signals 
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(c)  M1 

 
(d)  M2 – IMQ 

 
(e)  M2-GA 
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(f)  M2 - MQ 

Figure 3: Compassion of original and noisy signals taken from Lena 

image connected with salt and pepper noise 𝑳𝟐 = 𝟑𝟖%, these are denoted by 

(a) and (b); original and restored signals by using M1 and M2 for IMQ-RBF, 

GA-RBF, and MQ-RBF, respectively. These signals are shown in (c), (d), (e), 

and (f), respectively. Here the blue line indicates the original signal whereas 

the red line indicates the noisy or restored signal. The Selected values of 

involved parameters are 𝒄 = 𝟏. 𝟐𝟓and 𝝀 = 𝟏𝟑. 

Experiment 4 

In this examination, we conducted a comparison between the 

localized meshless scheme M2 and the Global Collection scheme (GMS) 

M3, as well as the traditional mesh-based scheme M1, for signal 

restoration with additive Gaussian noise 𝐿1 = 30%. The true and noisy 

signals can be seen in Figures 4(a) and 4(b). The Local meshless scheme 

M2, which selects center points based on stencil points around a particular 

center point, is a more systematic approach compared to the Global 

meshless scheme M3 [19, 20]. Due to this distinction, the Local meshless 

scheme M2 outperforms the GMS M3 in signal restoration. Both the Local 

and Global schemes M2 and M3 use the same number of center values, 

p=60. The localized meshless method M2 demonstrated superior and 

faster restoration performance compared to M3 and M1 due to its meshless 

application. These signals are depicted in Figures 4(c), 4(d), 4(e), 4(f), and 

Table 6. Additionally, the global method, being a meshless scheme, results 

in better performance than the traditional mesh-based method M1 due to 

its meshless nature and simple implementation. These results are presented 

in Fig 4. Overall, the Local meshless scheme's more systematic approach 

to center point selection makes it superior to the GMS M3 in signal 

restoration. 
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The main limitation in our work is the selection of optimal values 

of parameters involved in the proposed Local Meshless schemes (LMS) 

hard to select by “head and trail” rules and also time-consuming.  

Table 6: Comparison of SNR values of M1, M3, and M2 regarding SNR values. 

S.No. Signal selected of the Image Size 
SNR 

M1 GMS-M3 Proposed scheme- M2 

1 90th 512th 24.19 24.70 24.87 

 

 
(a) True signal 

 
(b) True and noise signals 
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(c)  M1 

 
(d)  M3 – GMS 

 
(e)  M2 – Proposed method 

Figure 4: (a) and (b) represent the true and noisy image with additive 

Gaussian noise 𝑳𝟏 = 𝟑𝟎%. While (c), (d), and (e) indicate respectively the 

obtained lines using M1, GMS M3, and proposed method M2. Here the blue 
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line indicates the original signal whereas the red line indicates the noisy or 

restored signal. The values of the parameters are 𝒄 = 𝟏. 𝟐𝟔and 𝝀 = 𝟏𝟒. 

Conclusion  

In this article, Local Collocation Scheme (LMS) has been 

introduced to solve the associated Euler Lagrange PED connected with 

ROF model. Due to the local meshless applications and Multi-Quadric 

Radial Basis Function (MQ-RBF), this scheme is helpful to get the smooth 

solution regarding signal restoration. The experimental outcomes reveal 

that the Local meshless method is not only produce better restoration 

performance than traditional scheme regarding signal restoration (SNR) 

but also faster restoration outcomes. The Local Meshless Algorithm is also 

not only producing better restoration for MQ-RBF than IMQ-RBF and 

GA-RBF but also generates better restoration outcomes than Global RBF 

method for same MQ-RBF as basis function. 

 However, the optimal values of parameters involved in the 

meshless shape parameter hard to select. This limitation is under 

consideration and will be addressed in the subsequent paper. 

Appendix 

The following are the derivatives utilized in Equation (34) using 

the Local Meshless technique M2: Given that Equation (29) is 

𝑝 = 𝐻−1𝑣0,                                           (40)  

After performing RBF interpolation and evaluating the derivative at 𝑁 

evaluation points ({𝑥𝑖}𝑖=1
𝑁 ) and  𝑁𝑐 center points({𝑥𝑗}𝑗=1

𝑁
), we obtain 

𝑣(𝑥) = ∑𝑝𝑗𝜑 (‖𝑥𝑖 − 𝑥𝑐𝑗‖2
)

𝑁

𝑖=1

,                         (41) 

Or 

𝑣 = 𝐻𝑝,                                                       (42) 

where 𝑁 × 𝑁𝐶  is evaluated by matrix H, that is, 

𝐾 = [𝜑𝑖𝑗] = [(‖𝑥𝑖 − 𝑥𝑐𝑗‖2
)] ,                              (43) 

𝑓𝑜𝑟𝑖 = 1,2,3, . . . . . 𝑁, 𝑗 = 1,2,3, . . . . . 𝑁𝐶 , 
The derivative from (34) then appears as under. 

𝜕𝑣

𝜕𝑥𝑖
= ∑𝑝𝑗

𝜕

𝜕𝑥𝑖
𝜑 (‖𝑥𝑖 − 𝑥𝑗‖2

) ,

𝑁𝐶

𝑗=1

                            (44) 

or 
𝜕𝑣

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
𝐾𝑝.                                                    (45) 

Where 
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𝜕ℎ

𝜕𝑥𝑖
=

𝜕[𝜑𝑖𝑗]

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
[𝜑(‖𝑥𝑖 − 𝑥𝑐𝑗‖)],                            (46) 

𝑓𝑜𝑟𝑖 = 1,2,3, . . . . . 𝑁, 𝑗 = 1,2,3, . . . . . 𝑁𝐶                                                                                                         

Combining Equations (34) and (42) we have 
𝜕𝑣

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
𝐾𝐻−1 𝑣0.                                                    (47) 

Define  𝑀 = 𝐾𝐻−1, then above Equation (47) can be rewrite as 
𝜕𝑣

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
𝑀𝑣0 = 𝑀𝑥𝑖

𝑣0.                                               (48) 

The differentiation matrix can be define as 

𝑀𝑥𝑖
=

𝜕

𝜕𝑥𝑖
𝐾𝐻−1 = 𝐾𝑥𝑖

𝐻−1.                                  (49) 

For second derivative, we have 

𝑀𝑥𝑖𝑥𝑖
=

𝜕2

𝜕𝑥𝑖
2 𝐾𝐻−1 = 𝐾𝑥𝑖𝑥𝑖

𝐻−1.                                (50) 

Also  

𝜕2𝑣

𝜕𝑥𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 𝑀𝑣0 = 𝑀𝑥𝑖𝑥𝑖

𝑣0.                                      (51) 

Given that the system matrix H is known to be invertible, the 

differentiation matrix is clearly defined. 

The chain rule provides 𝜑[𝑟(𝑥)],  for every substantially differentiable 

RBF.  
𝜕𝜑

𝜕𝑥𝑖
=

𝑑𝜑

𝑑𝑟

𝜕𝑟

𝜕𝑥𝑖
.                                                        (52) 

Regarding the initial derivative, having  
𝜕𝑟

𝜕𝑥𝑖
=

𝑥𝑖

𝑟
.                                                               (53) 

The calculation for the second derivative is as follows:  

𝜕2𝜑

𝜕𝑥𝑖
=

𝑑𝜑

𝑑𝑟

𝜕2𝑟

𝜕𝑥𝑖
2 +

𝑑2𝜑

𝑑𝑟2
(
𝜕𝑟

𝜕𝑥𝑖
)
2

,                             (54) 

With  

𝜕2𝑟

𝜕𝑥𝑖
2 =

1 − [
𝜕𝑟
𝜕𝑥𝑖

]
2

𝑟
.                                              (55) 

Specifically for the MQ, 

𝑑𝜑

𝑑𝑟
=

𝑑[𝑐2 + 𝑟2]

𝑑𝑟

1
2

=
𝑟

[𝑐2 + 𝑟2]
1
2

,                               (56) 

And 
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𝑑𝜑

𝑑𝑟2
=

𝑐2

[𝑐2 + 𝑟2]
3
2

.                                                    (57) 
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