
PRO-Net: A Novel Framework for Augmenting Android Security

against Botnets and Malware through Advanced Detection Metrics
Iqra Pervaiz*, Rutaba Irfan†, Mujeeb-Ur-Rehman‡, Zoraiz Ali§

Abstract

Android is a popular smartphone operating system, which dominates the market

with a global share of approximately 70.29%. Over 255 billion applications are

available on the official Play Store, with many more available from other sources.

Android is the leading platform for smartphone applications, with an increase in

the number of applications available. However, the demand for the Android

operating systems has also attracted the attention of malicious software

developers. A growing number of attackers are targeting mobile devices,

converting them into bots for their operations. This enables cybercriminals to

gain control of compromised devices, establishing networks known as botnets.

These botnets are then utilized to execute harmful activities such as Distributed

Denial-of-Service (DDoS) attacks, stealing sensitive data and spamming.

Unfortunately, some malicious apps are designed specifically for Android systems

to perform different types of offenses, such as worms, exploits, trojans, rootkit

viruses etc. These applications are often delivered in various versions to target a

larger audience, making them difficult to detect. As the safety of the Android

operating system is crucial, Machine Learning (ML) and Deep Learning (DL)

algorithms alone are not enough. Therefore, a new PRO-Net system has been

devised to protect against data breaches. The proposed framework, PRO-NET, is

evaluated using precision, accuracy, and F1 score metrics. The study reveals that

the system provides symmetry between apps and malware, which is essential for

maintaining the security of the Android operating system.

Keywords: Android Application; Malware Detection; Static Malware Analysis;

Machine Learning Algorithms; Deep Learning.

Introduction

Nowadays the smartphone market is experiencing significant

sustainable growth, with 4.98 billion people worldwide using mobile

devices (Gupta, 2018) (Mat S. R., 2022). Android-based botnets are

increasingly employed to attack specific devices.

In Distributed Denial-of-Service (DDoS) attacks, these botnets

flood the target system with an excessive volume of requests, effectively

*Department of Computer Science, University of Management and Technology, Sialkot

51310, Pakistan, iqrapervez12345@gmail.com
†Department of Computer Science, University of Management and Technology, Sialkot

51310, Pakistan, Rutabairfan1@gmail.com
‡Corresponding Author: Department of Computer Science, University of Management and

Technology, Sialkot 51310, Pakistan, mujeeb.rehman@skt.umt.edu.pk
§Department of Computer Science, University of Management and Technology, Sialkot

51310, Pakistan, zoraiz.ali@skt.umt.edu.pk

mailto:iqrapervez12345@gmail.com
mailto:Rutabairfan1@gmail.com
mailto:mujeeb.rehman@skt.umt.edu.pk
mailto:zoraiz.ali@skt.umt.edu.pk

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 149 Volume 5, Issue 4, Oct-Dec 2024

preventing legitimate traffic from accessing the system and resulting in

service disruptions and system failures. (Clarke, 1986). To protect against

these attacks, machine learning techniques have demonstrated their

effectiveness in identifying and monitoring threats within the Internet of

Things (IoT) (Alothman, 2017; Andersen, 2015).

Malicious programs are pieces of code designed to steal user

information and damage systems. These programs can be classified into

two types: threats that require host programs and threats that are

independent of each other (Chen, 2021). Android, being the most

extensively used operating system in the smartphone market, is often

targeted by scammers. Hackers have developed and distributed a variety

of Android malware using modern techniques. The research suggests that

by 2024, there will be more than 1.2 billion dangerous apps on the Android

platform, with over 11,500 new cases of malware appearing every day.

Continuous investigations in this area are crucial. Android malware is

malicious apps that can harm Android devices and users in various ways.

These include data encryption or destruction, credential theft, data

leakage, injecting malicious code into legitimate apps, and changing

device settings (Alkahtani, 2022).

Malware has the potential to infiltrate networks, damage critical

infrastructures, compromise computers and smart devices, and steal

sensitive information (Rathore, 2018). An analysis tool called LimonDroid

developed by (Tchakount, 2021), aims to identify malicious characters in

Android apps. Malware can penetrate networks, threaten essential

infrastructure, compromise both computers and smart devices, and extract

sensitive data. The remarkable advancement of technology, along with

digitalization, cloud and edge computing (Hartmann, 2022; Jamsa, 2022),

quantum computing (Gill, 2022), and the widespread adoption of

numerous connected devices (Priyadarshini, 2022), has resulted in

unprecedented levels of cybercriminal activities. Studies on malware

detection using machine learning are gaining popularity due to their

successful strategy, which can achieve a high level of detection accuracy

(Mat S. R., 2021). Malicious programs are software applications created

to steal user information and disrupt computer systems through various

attacks. These programs can be broadly categorized into two types: host

programs and independent threats, depending on how they operate. Their

behavior further differentiates them, including propagation, remote

control, and direct attack methods. Among these categories, there are

specific types of malicious software that are commonly found, such as

RiskTool applications, mobile banking trojans, and mobile ransomware

trojans. Each malicious program poses a unique threat to computer

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 150 Volume 5, Issue 4, Oct-Dec 2024

systems and users, requiring constant vigilance and robust security

measures to effectively mitigate their impact (Cinar, 2023).

To remove threats, the concept of permission-based detection is

explored and determine how it can be utilized alongside artificial

intelligence algorithms to detect and prevent malicious attacks on Android

systems. The permission-based mechanism works as a background

process that detects malicious APKs by performing both dynamic and

static examinations. The dynamic analysis examines the behavior of

applications during their execution, while the static analysis scrutinizes the

source code, bytes, or application binaries to identify any potential security

vulnerabilities (Akbar, 2022).

Static analysis is used to flag an application as malicious based on

an estimation of its potential runtime behaviors. These estimations are

usually derived from methods such as permission analysis, code analysis,

and API analysis. Android employs a permission-based security model to

secure user data or prevent apps from accessing sensitive user data.

Permissions in apps are commonly demoralized as they are regarded as

one of the most important security evaluation methods for the Android

platform. Therefore, without explicit permission, it is impossible to carry

out a management action. This makes authorization perusing a crucial

component in the process of detecting malware. Android apps request

permissions before they can function and provide their features to users.

When combined, multiple permissions can indicate certain negative

behaviors. With the static analysis, it is needed to parallel attach with the

dynamic analysis (Akbar, 2022).

As it is discussed in Figure 1, the general process of extracting

malware from Android apps is using some effective machine and deep

learning algorithms. To distinguish between "attack" and "normal"

applications by identifying their static and dynamic features separately.

Various machine and deep learning models such as support vector

machine (SVM), Naive Bayes (NB), neural networks (NN), long short-

term memory (LSTM), convolutional neural networks (CNN), and hybrid

models are evaluated using these features (Alkahtani, 2022).

Detecting malware is a major security concern for companies, as

it can have legal, reputational, and financial implications. One promising

approach to improving malware detection systems is through deep

learning, but this method presents several challenges. These include

selecting features based on correlation, implementing the solid coating

model, and utilizing the LSTM model. Each of these approaches is

complex and difficult to implement, but they can significantly enhance

performance (Alomari, 2023).

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 151 Volume 5, Issue 4, Oct-Dec 2024

Figure 1: Overview of the proposed framework for malware detection in

Android systems

Besides correlation, other than relationship, Quantum innovation

has a few conceivable outcomes to upgrade AI capabilities and quicken

development by preparing huge sets of information, tackling complex

issues speedier, and joining different sets of information. This innovation

brings counterfeit insights into a modern period in terms of execution

speed and information handling, empowering AI to handle more complex

issues. Quantum innovation gives phenomenal energy to fathom issues

that require serious calculations, which are becoming progressively

challenging as more complex information and connections are included

inside the factors. Large-scale quantum computing combined with fake

insights is a major insurgency for cybersecurity. Be that as it may,

cybercriminals also use powerful quantum computing capabilities to carry

out malicious cyber activities with devastating effects (Djenna, 2023).

Now it is required to explore and evaluate the effectiveness of

different machine (ML) and deep learning (DL) algorithms in detecting

mobile malware outbreaks. This research aims to offer the best model for

monitoring Android applications against malicious attacks. It is essential

to achieve the following goals in study:

A. It is needed to create an intrusion detection system for the Android

platform utilizing a range of machine learning and deep learning

algorithms

B. A comparison of the tested algorithms is presented with different art

models.

Literature Review

It is needed to discuss the permission-based approach, which acts

as a basic part of Android's security model, overseeing the entrance

privileges of applications to different gadget assets and functionalities.

Customary permission-based approaches include static investigation of an

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 152 Volume 5, Issue 4, Oct-Dec 2024

application's proclaimed authorizations to evaluate its potential security

gambles. It proposes a permissions-based malware detection system called

PerDRaML, designed to address the issue of malware applications

targeting Android devices (Akbar, 2022).The difference between useful

and unrelated permissions for benign apps and how the Android open-

source policy and integration for unofficial app stores make them

vulnerable to malicious intrusions. The proposed system uses a multi-level

approach that involves extracting features from a dataset of 10,000

applications and utilizing ML models to classify apps as either malicious

or benign.

The new method is inspired by (Zhu, 2018), and employs a

permission-based detection strategy to identify malicious APKs. The goal

of this new approach is to enhance the detection of malicious APKs while

minimizing the number of permissions needed for classification. Unlike

the (Zhu, 2018), which only utilizes Support Vector Machine (SVM) and

Rotation Forest classifiers, the proposed strategy incorporates Support

Vector Machine (SVM), Naïve Bayes (NB), and Random Forest (RF)

classifiers for classification. The selection of permissions is based on their

significant impact on virus detection effectiveness. The following are the

main components of the planned research:

Gathering Both Benign and Malicious APKs; Developing/Determining

the Features Set; Refinement, Completion, and Acquisition of Permissions

(Features) Dataset; Classifying Android Malware Using Supervised ML

Algorithms (Akbar, 2022).

Extensive experimentation has demonstrated PerDRaML's ability

to detect malware with high accuracies, optimize the feature set, and

improve evaluation metrics compared to existing techniques. The system

employs various ML models, such as SVM, RF, and NB, which achieve

accuracies of 89.7%, 86.25%, and 89.52%, respectively. The proposed

system also optimizes the feature set by up to 77% compared to recent

methods, while improving evaluation metrics such as precision,

sensitivity, and accuracy (Akbar, 2022). It is required to compare multiple

machine-learning and deep-learning algorithms using two datasets, to

answer specific inquiry questions.

Which ML and DL algorithms are suitable for detecting Android

malware?

What are the suggested ML and DL models validation accuracy,

robustness, and efficiency in identifying Android malware? (Alkahtani,

2022).

Experimentations are conducted on two commonly used datasets:

CICAndMal2017 and Drebin. The Drebin dataset comprises over 100,000

Android apps, containing both benign and malware samples, which are

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 153 Volume 5, Issue 4, Oct-Dec 2024

widely used to guess the act of Android malware detection procedures. On

the other hand, CICAndMal2017 consists of Android adware and

ransomware samples from 2017, which provides a strong foundation for

evaluating detection algorithms (Alkahtani, 2022). The combination of

CICAndMal2017 and Drebin allows for a comprehensive evaluation of the

PRO-Net framework. CICAndMal2017 offers insights into detecting

specific categories like ransomware and adware, while Drebin tests the

framework’s ability to handle diverse malware families. This dual-dataset

approach ensures that PRO-Net is assessed under varying conditions,

validating its effectiveness and robustness.

This study analyzes the effectiveness of different models in

identifying malicious Android packets using standard Android malware

datasets. Three models, SVM, Linear Discriminant Analysis (LDA), and

K-Nearest Neighbor (KNN) are used to achieve the objective. The network

has a complex structure, and to achieve high accuracy, nonlinear models

are proposed. The SVM algorithm shows the highest precision, achieving

100% results in overall performance measurements (Alkahtani, 2022).

However, the linear models such as LDA and KNN does not

perform well in detecting Android malware. The accuracy of LDA is only

45.37% in the CICAndMal2017 dataset and enhances to 81.39% when

using the Drebin dataset. The KNN model achieves just 82% accuracy

with the Drebin dataset, indicating that both the LDA and KNN models

are unsuitable for detecting Android malware (Alkahtani, 2022). It also

examines the results of deep learning models using the AE mode in

detecting mobile attacks. However, the results are not satisfactory. The AE

achieves only 75.99% and 56.78% accuracy for the CICAndMal2017 and

Drebin datasets, respectively (Alkahtani, 2022).

Alomari (2023) discusses how malware traffic is asymmetrical in

nature, unlike benign traffic, which is symmetrical. Nonetheless, there are

several artificial intelligence techniques that can be employed to detect

malware and differentiate it from normal activities. But handling

voluminous and high-dimensional data is still a challenge. The paper

presents a high-performance malware detection system that uses deep

learning and feature selection methodologies. To check its effectiveness,

the authors employs two distinct sets of malware data to train and test deep

models. The initial dataset comprises a large number of entries but had a

limited set of attributes. In contrast, the second dataset features fewer

entries but includes a vast number of attributes, resulting in a complex and

high-dimensional structure.

Different researchers deal differently with malware as malware

scanners and traditional antivirus solutions are no longer sufficient to

protect against modern malware threats. To effectively predict and prevent

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 154 Volume 5, Issue 4, Oct-Dec 2024

damage caused by malware, it is important to conduct a thorough

examination of malware to create new and effective solutions. A

systematic method is proposed that integrates dynamic deep learning-

based techniques with heuristic approaches to classify and identify five

families of malware—rootkits, adware, SMS malware, and ransomware—

using the Android dataset (CICAndMal2017). It evaluates the enactment

of future detection approaches using various estimate measures. The

experimental results suggest that combining behavior-based DNN with a

heuristic-based approach leads to better performance compared to using

ML and DL methods alone (Djenna, 2023).

Various methodologies utilized in malware detection has been

compared while highlighting their evaluation metrics, research gaps and

their datasets. By using Android malware databases, Akbar (2022) has

concentrated on selected permission sets to maximize malware detection

rates and has ultimately achieved an accuracy of 89.70% and 89.96%

accuracy with SVM and random forests, respectively. A mixed-method

approach using CICAndMal2017, and Drebin datasets is employed by

Alkahtani (2022) which yields a remarkable accuracy of 100% for SVM

and 99.40% for LSTM, but this approach lacks of real time detection and

feature engineering. Cinar (2023) has solved issues of user awareness and

bias mitigation that evolved during emerging threats but has not defined a

dataset. A combination of heuristic and behavior-based approaches,

suggested by Djenna (2023), has detected five malware families using

advancedCICAndMal2017, highlighting the need for larger datasets and

advanced learning models.

This research aims to develop an efficient malware detection

model that is both robust and requires low computational resources. To

achieve this, a feature selection approach is employed that reduces the

number of features and minimizes computational time. It is needed utilize

both static and dynamic analysis techniques to enhance performance and

detect advanced, complex malware in these applications. By combining

deep learning, high performance, and feature selection, it is expected to

introduce a novel malware detection model that surpasses previous

studies. Feature selection and data preprocessing as recommended by

Alomari (2023), is used to enhance malware detection with Android

malware datasets, exploring the impact of feature selection on model

performance.

Proposed Framework

While ensuring security, a technique called PRO-NET has been

developed to detect Android malware among benign applications, which

further incudes sub-modules discussed below.

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 155 Volume 5, Issue 4, Oct-Dec 2024

Feature Extraction

Using signature-based and behavior-based classification methods,

this method comprises extracting features from both benign and malicious

data. In the signature-based approach, API features are extracted, while

behavior-based data is transformed into binary data for feature extraction.

It is needed to use dualistic grouping to determine whether an Android

application is nonviolent or risky based on static features. It is required to

monitor virus actions and perform dynamic analysis by running malware

in a simulated sandbox environment for a few minutes.

The proposed PRO-Net framework has been fabricated with

scalability and efficiency in mind to make sure its applicability across a

wide range of Android devices, from high-end smartphones to low-

resource devices. The following deliberations highlight its impact on real-

world applications.

Low-Resource Device Compatibility

The framework utilizes lightweight static analysis techniques,

such as permission and API call evaluations, which need minimal

computational resources. Dynamic analysis is performed selectively,

leveraging sandbox environments to ensure efficient runtime behavior

monitoring without overburdening device hardware. These optimizations

make PRO-Net viable for mid- and low-range devices.

High-End Smartphone Advantages: On high-end devices, PRO-

Net utilizes its full potential by integrating more advanced dynamic

analysis techniques, such as real-time monitoring of network traffic and

in-depth behavioral assessments. This enhances detection accuracy and

real-time response capabilities. The reason for this approach is to instruct

a learning specialist to choose features for classifying progressively. The

framework consecutively chooses features beneath the greedy technique

until it comes to an end state. In Figure 2 (above), it is explained that the

Android System uses the APK (Android Package Kit) file format to install

and distribute apps on devices. APK files contain all the necessary

components for a mobile application to install and run properly. The APK

TOOL is used to decompile both malicious and helpful files to extract the

required information. There are two groups of analysis in this record.

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 156 Volume 5, Issue 4, Oct-Dec 2024

Figure 2: Feature extraction process for Android malware detection,

highlighting binary and API Features.

Static Analysis

(a) Permissions: Applications need approval to access facts and features

like cameras, storage, and calls. Always review these requests carefully

before accepting them to ensure your privacy.

(b) Suspicious API calls: Unauthorized access to private data and

resources leads to harmful behavior. It is important to ensure that such

access is prevented and that proper security measures are in place to

protect sensitive information.

(c) Without its execution and testing, static analysis inspects the

application's code and associated metadata. This technique is

computationally fast and efficient and identifies potential vulnerabilities

or malicious behaviors in the application's structure.

Dynamic Analysis

This is very demanding type of analysis that concentrates on the

characteristics that can be obtained by implementing the application. It is

needed to indicate that it is possible to retrieve numerous dynamic features

from Android based devices and applications. Dynamic analysis monitors

the application's behavior during execution, often in a controlled

environment like a sandbox. This method is effective in detecting runtime

threats that static analysis misses most often.

Figure 3 portrays the progression of feature extraction and

procedure utilized in the PRO-Net framework to classify Android

applications as benign or malicious. This step is pivotal in ensuring that

meaningful and relevant data is fed into the machine learning and deep

learning models for accurate malware detection. The goal of the

classification model is to predict a class label from a set of available

options. There are two main types of class problems: multiclass

classifications and binary classifications. When it comes to detecting

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 157 Volume 5, Issue 4, Oct-Dec 2024

malware on Android, it is considered a binary classification problem. It is

essential to use binary ordering to determine if an app is harmless or risky

based on static features. Multiple techniques are then applied to verify

accuracy. Different algorithms yield varying accuracy based on the feature

extraction list. To achieve its objective through the use of binary

arrangement. SVM excels in analyzing static features, providing high

accuracy for detecting malware based on permissions, file properties, and

API calls. LSTM complements SVM by focusing on dynamic features,

such as runtime behavior and sequential API interactions, which are

critical for detecting advanced and evasive malware.

Figure 3: Classification model for distinguishing between benign and

malicious Android applications.

After the feature selection step, the reliability of the detection model is

based on the following parameters.

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
x100% (1)

Sensitivity=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 x 100% (2)

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
x 100% (3)

F1-Score=
2𝑥𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 𝑥 100% (4)

The following terms are used to describe the accuracy of a testing

sample. True positive (TP) denotes the number of positive samples

correctly identified as positive. False positive (FP) refers to the number of

negative samples incorrectly classified as positive. True negative (TN)

represents the number of negative samples accurately identified as

negative. False negative (FN) is the number of positive samples incorrectly

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 158 Volume 5, Issue 4, Oct-Dec 2024

classified as negative. To attain high performance, it is essential to

evaluate various machine learning and deep learning algorithms.

To evaluate our proposed framework, ‘MalDroid’ dataset is

utilized which contains eighty-five instances whereas target column

contains three different malware classes. We used ML (Random Forest)

and DL (Artificial Neural Network) algorithms for classification. The

selected dataset is preprocessed, unnecessary columns are removed and

missing values are handled. Further, categorical data is converted into

numeric form, finally, relevant features and target labels are separated to

enhance the efficiency of algorithms.

Results and Discussion

The first step is the feature extraction and selection. It is an

essential process that aims to choose the attributes with the highest

accuracy while reducing complexity and avoiding overfitting.

Historically, researchers have used various techniques to categorize

features to identify malware in apps as shown in Table 1. For this attempt,

the feature-overgrown strategy is specifically chosen which selects the

necessary features to build malware detection models. The most highly

ranked features are considered and defined.

Table 1: Sample of efficient feature selection)

Features Analysis type Feature type Details

.DEX file Dynamic Behavior based Process extraction

Task Intents Static Signature based Internal words

Process ID Static Behavior based Process tracking

SMS Static Signature based Opcode verification

Power Usage Static Behavior based Hashing tricks

Log files Dynamic Behavior based Process monitor

The performance of the Random Forest and Artificial Neural

Network (ANN) models is evaluated on the chosen dataset using four key

metrics: Accuracy, Precision, Recall, and F1 Score. Below is an analysis

of the results presented in Table 2.

Table 2: Performance Metrics Table.

Metric Random Forest ANN

Accuracy 88.89% 90.12%

Precision 89.18% 90.28%

Recall 88.89% 90.12%

F1 Score 88.77% 89.96%

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 159 Volume 5, Issue 4, Oct-Dec 2024

Figure 4 compares visually these metrics for both models. Each

group of bars represents a specific metric (Accuracy, Precision, Recall,

and F1 Score), with one bar for Random Forest and other for ANN.

Figure 4: Comparative analysis using Machine learning and deep learning

Models.

The analysis reveals that while both Random Forest and ANN are

effective in classifying the dataset, ANN outperforms Random Forest in

all evaluated metrics. This makes ANN a preferable choice for this

classification task, as it captures complex patterns in the data slightly

better.

By joining static and dynamic analysis, the PRO-Net framework

compromises a significant improvement in Android malware detection

that ensures compatibility with both high-end and low-resource devices.

Contrasting existing methods like Zhu's static analysis or Akbar's

permissions-based detection, which lack runtime behavior monitoring,

PRO-Net integrates sandbox-based dynamic analysis to detect evasive

malware more efficiently and effectively. Its feature extraction approach

integrates lightweight and advanced techniques, addressing the

weaknesses of models like Alkahtani's, which emphasize dataset diversity

but overlook real-time detection. However, PRO-Net's reliance on binary

classification may limit its ability to identify unknown malware families

compared to heuristic or clustering methods, as suggested by Djenna.

While its precision and scalability make it versatile and robust, further

optimization for potential threats and dataset expansion could augment its

generalizability and reliability.

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 160 Volume 5, Issue 4, Oct-Dec 2024

Conclusion

The proposed PRO-NET framework employs a triple-feature

extraction technique that helps to identify potentially malicious behavior

in the Android environment. It doesn't rely on label datasets but also

focuses on feature engineering techniques to extract relevant features such

as file properties, system calls, API calls, network traffic patterns and

permissions requested by applications. By cautiously choosing and

designing these important features, the framework trains a model to detect

suspicious patterns. Dynamic behavioral analysis techniques are used to

observe the runtime behavior of applications, after analyzing static

behavior. This technique can detect malicious activities based on actions

performed by the application, such as unauthorized access to personal data

or suspicious network communications. The proposed PRO-Net

framework has shown promising results in detecting Android based

malware. However, there are areas for further exploration: Incorporate

additional datasets representing emerging malware threats to enhance

model generalization, Optimize the framework for low-end Android

devices, ensuring scalability and efficiency across varying hardware

configurations. It is the need of hour to explore clustering techniques to

identify unknown malware families without relying on labeled data. To

improve detection accuracies, the theme is evaluated using both

supervised and unsupervised deep learning algorithms and advanced

technologies, with and without labeled data, to detect new and highly

dangerous malware.

References

Akbar, F. a.-H. (2022). Permissions-based detection of android malware

using machine learning. Symmetry ,14(4), 718.

Alkahtani, H. a. (2022). Artificial intelligence algorithms for malware

detection in android-operated mobile devices. Sensors.

Alomari, E. S. (2023). Malware detection using deep learning and

correlation-based feature selection. . Symmetry.

Alothman, B. a. (2017). Android botnet detection: An integrated source

code mining approach. 12th International Conference for Internet

Technology and Secured Transactions (ICITST), (pp. 111--115.).

Andersen, J. R. (2015). CAAL: concurrency workbench, aalborg edition.

In Theoretical Aspects of Computing. 12th International

Colloquium, Cali, . Colombia.

Chen, L. a. (2021). Detection, traceability, and propagation of mobile

malware threats. IEEE Access, ,9, 14576-14598.

Framework for Augmenting Android Security against Botnets & Malware Pervaiz et al.

The Sciencetech 161 Volume 5, Issue 4, Oct-Dec 2024

Cinar, A. C. (2023). The current state and future of mobile security in the

light of the recent mobile security threat reports. . Multimedia

Tools and Applications.

Clarke, E. M. (1986). Automatic verification of finite-state concurrent

systems using temporal logic specifications. . ACM Transactions

on Programming Languages and Systems (TOPLAS).

Djenna, A. a. (2023). Artificial intelligence-based malware detection,

analysis, and mitigation. Symmetry.

Gill, S. S. (2022). Quantum computing: A taxonomy, systematic review

and future directions. Software: Practice and Experience., 52(1),

66-114.

Gupta, B. B. (2018). Advances in security and privacy of multimedia big

data in mobile and cloud computing. Multimedia Tools and

Applications, 9203-9208.

Hartmann, M. a. (2022). Edge computing in smart health care systems:

Review, challenges, and research directions. Transactions on

Emerging Telecommunications Technologies.

Jamsa, K. (2022). Cloud computing. Jones \& Bartlett Learning.

Mat, S. R. (2021). Towards a systematic description of the field using

bibliometric analysis: malware evolution. Scientometrics., 126:

2013-2055.

Mat, S. R. (2022). A Bayesian probability model for Android malware

detection. ICT Express, 8, no. 3 (2022): 424-431.

Priyadarshini, S. B. (2022). In The Role of the Internet of Things (Iot) in

Biomedical Engineering: Present Scenario and Challenges.

Apple Academic Press.

Rathore, H. a. (2018). Malware detection using machine learning and deep

learning. . 6th International Conference, BDA 2018, Warangal.

India.

Tchakount, F. a. (2021). LimonDroid: a system coupling three signature-

based schemes for profiling Android malware. Iran Journal of

Computer Science.

Poornima, S., & Mahalakshmi, R. (2024). Automated malware detection

using machine learning and deep learning approaches for android

applications. Measurement: Sensors, 32, 100955.

Zhu, H. J. (2018). DroidDet: effective and robust detection of android

malware using static analysis along with rotation forest model.

Neurocomputing., 272, 638-646.

