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Abstract 

Android is a popular smartphone operating system, which dominates the market 

with a global share of approximately 70.29%. Over 255 billion applications are 

available on the official Play Store, with many more available from other sources. 

Android is the leading platform for smartphone applications, with an increase in 

the number of applications available. However, the demand for the Android 

operating systems has also attracted the attention of malicious software 

developers. A growing number of attackers are targeting mobile devices, 

converting them into bots for their operations. This enables cybercriminals to 

gain control of compromised devices, establishing networks known as botnets. 

These botnets are then utilized to execute harmful activities such as Distributed 

Denial-of-Service (DDoS) attacks, stealing sensitive data and spamming. 

Unfortunately, some malicious apps are designed specifically for Android systems 

to perform different types of offenses, such as worms, exploits, trojans, rootkit 

viruses etc. These applications are often delivered in various versions to target a 

larger audience, making them difficult to detect. As the safety of the Android 

operating system is crucial, Machine Learning (ML) and Deep Learning (DL) 

algorithms alone are not enough. Therefore, a new PRO-Net system has been 

devised to protect against data breaches. The proposed framework, PRO-NET, is 

evaluated using precision, accuracy, and F1 score metrics. The study reveals that 

the system provides symmetry between apps and malware, which is essential for 

maintaining the security of the Android operating system. 

Keywords: Android Application; Malware Detection; Static Malware Analysis; 

Machine Learning Algorithms; Deep Learning.

Introduction 

Nowadays the smartphone market is experiencing significant 

sustainable growth, with 4.98 billion people worldwide using mobile 

devices (Gupta, 2018) (Mat S. R., 2022). Android-based botnets are 

increasingly employed to attack specific devices.  

In Distributed Denial-of-Service (DDoS) attacks, these botnets 

flood the target system with an excessive volume of requests, effectively 
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preventing legitimate traffic from accessing the system and resulting in 

service disruptions and system failures. (Clarke, 1986). To protect against 

these attacks, machine learning techniques have demonstrated their 

effectiveness in identifying and monitoring threats within the Internet of 

Things (IoT) (Alothman, 2017; Andersen, 2015). 

Malicious programs are pieces of code designed to steal user 

information and damage systems. These programs can be classified into 

two types: threats that require host programs and threats that are 

independent of each other (Chen, 2021). Android, being the most 

extensively used operating system in the smartphone market, is often 

targeted by scammers. Hackers have developed and distributed a variety 

of Android malware using modern techniques. The research suggests that 

by 2024, there will be more than 1.2 billion dangerous apps on the Android 

platform, with over 11,500 new cases of malware appearing every day. 

Continuous investigations in this area are crucial. Android malware is 

malicious apps that can harm Android devices and users in various ways. 

These include data encryption or destruction, credential theft, data 

leakage, injecting malicious code into legitimate apps, and changing 

device settings (Alkahtani, 2022). 

Malware has the potential to infiltrate networks, damage critical 

infrastructures, compromise computers and smart devices, and steal 

sensitive information (Rathore, 2018). An analysis tool called LimonDroid 

developed by (Tchakount, 2021), aims to identify malicious characters in 

Android apps. Malware can penetrate networks, threaten essential 

infrastructure, compromise both computers and smart devices, and extract 

sensitive data. The remarkable advancement of technology, along with 

digitalization, cloud and edge computing (Hartmann, 2022; Jamsa, 2022), 

quantum computing (Gill, 2022), and the widespread adoption of 

numerous connected devices (Priyadarshini, 2022), has resulted in 

unprecedented levels of cybercriminal activities. Studies on malware 

detection using machine learning are gaining popularity due to their 

successful strategy, which can achieve a high level of detection accuracy 

(Mat S. R., 2021). Malicious programs are software applications created 

to steal user information and disrupt computer systems through various 

attacks. These programs can be broadly categorized into two types: host 

programs and independent threats, depending on how they operate. Their 

behavior further differentiates them, including propagation, remote 

control, and direct attack methods. Among these categories, there are 

specific types of malicious software that are commonly found, such as 

RiskTool applications, mobile banking trojans, and mobile ransomware 

trojans. Each malicious program poses a unique threat to computer 
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systems and users, requiring constant vigilance and robust security 

measures to effectively mitigate their impact (Cinar, 2023). 

To remove threats, the concept of permission-based detection is 

explored and determine how it can be utilized alongside artificial 

intelligence algorithms to detect and prevent malicious attacks on Android 

systems. The permission-based mechanism works as a background 

process that detects malicious APKs by performing both dynamic and 

static examinations. The dynamic analysis examines the behavior of 

applications during their execution, while the static analysis scrutinizes the 

source code, bytes, or application binaries to identify any potential security 

vulnerabilities (Akbar, 2022). 

Static analysis is used to flag an application as malicious based on 

an estimation of its potential runtime behaviors. These estimations are 

usually derived from methods such as permission analysis, code analysis, 

and API analysis. Android employs a permission-based security model to 

secure user data or prevent apps from accessing sensitive user data. 

Permissions in apps are commonly demoralized as they are regarded as 

one of the most important security evaluation methods for the Android 

platform. Therefore, without explicit permission, it is impossible to carry 

out a management action. This makes authorization perusing a crucial 

component in the process of detecting malware. Android apps request 

permissions before they can function and provide their features to users. 

When combined, multiple permissions can indicate certain negative 

behaviors. With the static analysis, it is needed to parallel attach with the 

dynamic analysis (Akbar, 2022). 

As it is discussed in Figure 1, the general process of extracting 

malware from Android apps is using some effective machine and deep 

learning algorithms. To distinguish between "attack" and "normal" 

applications by identifying their static and dynamic features separately. 

Various machine and deep learning models such as support vector 

machine (SVM), Naive Bayes (NB), neural networks (NN), long short-

term memory (LSTM), convolutional neural networks (CNN), and hybrid 

models are evaluated using these features (Alkahtani, 2022). 

Detecting malware is a major security concern for companies, as 

it can have legal, reputational, and financial implications. One promising 

approach to improving malware detection systems is through deep 

learning, but this method presents several challenges. These include 

selecting features based on correlation, implementing the solid coating 

model, and utilizing the LSTM model. Each of these approaches is 

complex and difficult to implement, but they can significantly enhance 

performance (Alomari, 2023). 
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Figure 1: Overview of the proposed framework for malware detection in 

Android systems 

 

Besides correlation, other than relationship, Quantum innovation 

has a few conceivable outcomes to upgrade AI capabilities and quicken 

development by preparing huge sets of information, tackling complex 

issues speedier, and joining different sets of information. This innovation 

brings counterfeit insights into a modern period in terms of execution 

speed and information handling, empowering AI to handle more complex 

issues. Quantum innovation gives phenomenal energy to fathom issues 

that require serious calculations, which are becoming progressively 

challenging as more complex information and connections are included 

inside the factors. Large-scale quantum computing combined with fake 

insights is a major insurgency for cybersecurity. Be that as it may, 

cybercriminals also use powerful quantum computing capabilities to carry 

out malicious cyber activities with devastating effects (Djenna, 2023). 

Now it is required to explore and evaluate the effectiveness of 

different machine (ML) and deep learning (DL) algorithms in detecting 

mobile malware outbreaks. This research aims to offer the best model for 

monitoring Android applications against malicious attacks. It is essential 

to achieve the following goals in study: 

A. It is needed to create an intrusion detection system for the Android 

platform utilizing a range of machine learning and deep learning 

algorithms 

B. A comparison of the tested algorithms is presented with different art 

models. 

Literature Review 

It is needed to discuss the permission-based approach, which acts 

as a basic part of Android's security model, overseeing the entrance 

privileges of applications to different gadget assets and functionalities. 

Customary permission-based approaches include static investigation of an 
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application's proclaimed authorizations to evaluate its potential security 

gambles. It proposes a permissions-based malware detection system called 

PerDRaML, designed to address the issue of malware applications 

targeting Android devices (Akbar, 2022).The difference between useful 

and unrelated permissions for benign apps and how the Android open-

source policy and integration for unofficial app stores make them 

vulnerable to malicious intrusions. The proposed system uses a multi-level 

approach that involves extracting features from a dataset of 10,000 

applications and utilizing ML models to classify apps as either malicious 

or benign. 

The new method is inspired by (Zhu, 2018), and employs a 

permission-based detection strategy to identify malicious APKs. The goal 

of this new approach is to enhance the detection of malicious APKs while 

minimizing the number of permissions needed for classification. Unlike 

the (Zhu, 2018), which only utilizes Support Vector Machine (SVM) and 

Rotation Forest classifiers, the proposed strategy incorporates Support 

Vector Machine (SVM), Naïve Bayes (NB), and Random Forest (RF) 

classifiers for classification. The selection of permissions is based on their 

significant impact on virus detection effectiveness. The following are the 

main components of the planned research: 

Gathering Both Benign and Malicious APKs; Developing/Determining 

the Features Set; Refinement, Completion, and Acquisition of Permissions 

(Features) Dataset; Classifying Android Malware Using Supervised ML 

Algorithms (Akbar, 2022). 

Extensive experimentation has demonstrated PerDRaML's ability 

to detect malware with high accuracies, optimize the feature set, and 

improve evaluation metrics compared to existing techniques. The system 

employs various ML models, such as SVM, RF, and NB, which achieve 

accuracies of 89.7%, 86.25%, and 89.52%, respectively. The proposed 

system also optimizes the feature set by up to 77% compared to recent 

methods, while improving evaluation metrics such as precision, 

sensitivity, and accuracy (Akbar, 2022). It is required to compare multiple 

machine-learning and deep-learning algorithms using two datasets, to 

answer specific inquiry questions. 

Which ML and DL algorithms are suitable for detecting Android 

malware? 

What are the suggested ML and DL models validation accuracy, 

robustness, and efficiency in identifying Android malware? (Alkahtani, 

2022). 

Experimentations are conducted on two commonly used datasets: 

CICAndMal2017 and Drebin. The Drebin dataset comprises over 100,000 

Android apps, containing both benign and malware samples, which are 
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widely used to guess the act of Android malware detection procedures. On 

the other hand, CICAndMal2017 consists of Android adware and 

ransomware samples from 2017, which provides a strong foundation for 

evaluating detection algorithms (Alkahtani, 2022). The combination of 

CICAndMal2017 and Drebin allows for a comprehensive evaluation of the 

PRO-Net framework. CICAndMal2017 offers insights into detecting 

specific categories like ransomware and adware, while Drebin tests the 

framework’s ability to handle diverse malware families. This dual-dataset 

approach ensures that PRO-Net is assessed under varying conditions, 

validating its effectiveness and robustness. 

This study analyzes the effectiveness of different models in 

identifying malicious Android packets using standard Android malware 

datasets. Three models, SVM, Linear Discriminant Analysis (LDA), and 

K-Nearest Neighbor (KNN) are used to achieve the objective. The network 

has a complex structure, and to achieve high accuracy, nonlinear models 

are proposed. The SVM algorithm shows the highest precision, achieving 

100% results in overall performance measurements (Alkahtani, 2022). 

However, the linear models such as LDA and KNN does not 

perform well in detecting Android malware. The accuracy of LDA is only 

45.37% in the CICAndMal2017 dataset and enhances to 81.39% when 

using the Drebin dataset. The KNN model achieves just 82% accuracy 

with the Drebin dataset, indicating that both the LDA and KNN models 

are unsuitable for detecting Android malware (Alkahtani, 2022). It also 

examines the results of deep learning models using the AE mode in 

detecting mobile attacks. However, the results are not satisfactory. The AE 

achieves only 75.99% and 56.78% accuracy for the CICAndMal2017 and 

Drebin datasets, respectively (Alkahtani, 2022). 

Alomari (2023) discusses how malware traffic is asymmetrical in 

nature, unlike benign traffic, which is symmetrical. Nonetheless, there are 

several artificial intelligence techniques that can be employed to detect 

malware and differentiate it from normal activities. But handling 

voluminous and high-dimensional data is still a challenge. The paper 

presents a high-performance malware detection system that uses deep 

learning and feature selection methodologies. To check its effectiveness, 

the authors employs two distinct sets of malware data to train and test deep 

models. The initial dataset comprises a large number of entries but had a 

limited set of attributes. In contrast, the second dataset features fewer 

entries but includes a vast number of attributes, resulting in a complex and 

high-dimensional structure. 

Different researchers deal differently with malware as malware 

scanners and traditional antivirus solutions are no longer sufficient to 

protect against modern malware threats. To effectively predict and prevent 
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damage caused by malware, it is important to conduct a thorough 

examination of malware to create new and effective solutions. A 

systematic method is proposed that integrates dynamic deep learning-

based techniques with heuristic approaches to classify and identify five 

families of malware—rootkits, adware, SMS malware, and ransomware—

using the Android dataset (CICAndMal2017). It evaluates the enactment 

of future detection approaches using various estimate measures. The 

experimental results suggest that combining behavior-based DNN with a 

heuristic-based approach leads to better performance compared to using 

ML and DL methods alone (Djenna, 2023). 

Various methodologies utilized in malware detection has been 

compared while highlighting their evaluation metrics, research gaps and 

their datasets. By using Android malware databases, Akbar (2022) has 

concentrated on selected permission sets to maximize malware detection 

rates and has ultimately achieved an accuracy of 89.70% and 89.96% 

accuracy with SVM and random forests, respectively. A mixed-method 

approach using CICAndMal2017, and Drebin datasets is employed by 

Alkahtani (2022) which yields a remarkable accuracy of 100% for SVM 

and 99.40% for LSTM, but this approach lacks of real time detection and 

feature engineering. Cinar (2023) has solved issues of user awareness and 

bias mitigation that evolved during emerging threats but has not defined a 

dataset. A combination of heuristic and behavior-based approaches, 

suggested by Djenna (2023), has detected five malware families using 

advancedCICAndMal2017, highlighting the need for larger datasets and 

advanced learning models. 

This research aims to develop an efficient malware detection 

model that is both robust and requires low computational resources. To 

achieve this, a feature selection approach is employed that reduces the 

number of features and minimizes computational time. It is needed utilize 

both static and dynamic analysis techniques to enhance performance and 

detect advanced, complex malware in these applications. By combining 

deep learning, high performance, and feature selection, it is expected to 

introduce a novel malware detection model that surpasses previous 

studies. Feature selection and data preprocessing as recommended by 

Alomari (2023), is used to enhance malware detection with Android 

malware datasets, exploring the impact of feature selection on model 

performance. 

Proposed Framework 

While ensuring security, a technique called PRO-NET has been 

developed to detect Android malware among benign applications, which 

further incudes sub-modules discussed below.   
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Feature Extraction 

Using signature-based and behavior-based classification methods, 

this method comprises extracting features from both benign and malicious 

data. In the signature-based approach, API features are extracted, while 

behavior-based data is transformed into binary data for feature extraction. 

It is needed to use dualistic grouping to determine whether an Android 

application is nonviolent or risky based on static features. It is required to 

monitor virus actions and perform dynamic analysis by running malware 

in a simulated sandbox environment for a few minutes. 

The proposed PRO-Net framework has been fabricated with 

scalability and efficiency in mind to make sure its applicability across a 

wide range of Android devices, from high-end smartphones to low-

resource devices. The following deliberations highlight its impact on real-

world applications. 

Low-Resource Device Compatibility 

The framework utilizes lightweight static analysis techniques, 

such as permission and API call evaluations, which need minimal 

computational resources. Dynamic analysis is performed selectively, 

leveraging sandbox environments to ensure efficient runtime behavior 

monitoring without overburdening device hardware. These optimizations 

make PRO-Net viable for mid- and low-range devices.  

High-End Smartphone Advantages: On high-end devices, PRO-

Net utilizes its full potential by integrating more advanced dynamic 

analysis techniques, such as real-time monitoring of network traffic and 

in-depth behavioral assessments. This enhances detection accuracy and 

real-time response capabilities. The reason for this approach is to instruct 

a learning specialist to choose features for classifying progressively. The 

framework consecutively chooses features beneath the greedy technique 

until it comes to an end state. In Figure 2 (above), it is explained that the 

Android System uses the APK (Android Package Kit) file format to install 

and distribute apps on devices. APK files contain all the necessary 

components for a mobile application to install and run properly. The APK 

TOOL is used to decompile both malicious and helpful files to extract the 

required information. There are two groups of analysis in this record. 
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Figure 2: Feature extraction process for Android malware detection, 

highlighting binary and API Features. 

Static Analysis 

(a) Permissions: Applications need approval to access facts and features 

like cameras, storage, and calls. Always review these requests carefully 

before accepting them to ensure your privacy. 

(b) Suspicious API calls: Unauthorized access to private data and 

resources leads to harmful behavior. It is important to ensure that such 

access is prevented and that proper security measures are in place to 

protect sensitive information.  

(c) Without its execution and testing, static analysis inspects the 

application's code and associated metadata. This technique is 

computationally fast and efficient and identifies potential vulnerabilities 

or malicious behaviors in the application's structure. 

Dynamic Analysis 

This is very demanding type of analysis that concentrates on the 

characteristics that can be obtained by implementing the application. It is 

needed to indicate that it is possible to retrieve numerous dynamic features 

from Android based devices and applications. Dynamic analysis monitors 

the application's behavior during execution, often in a controlled 

environment like a sandbox. This method is effective in detecting runtime 

threats that static analysis misses most often. 

Figure 3 portrays the progression of feature extraction and 

procedure utilized in the PRO-Net framework to classify Android 

applications as benign or malicious. This step is pivotal in ensuring that 

meaningful and relevant data is fed into the machine learning and deep 

learning models for accurate malware detection. The goal of the 

classification model is to predict a class label from a set of available 

options. There are two main types of class problems: multiclass 

classifications and binary classifications. When it comes to detecting 
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malware on Android, it is considered a binary classification problem. It is 

essential to use binary ordering to determine if an app is harmless or risky 

based on static features. Multiple techniques are then applied to verify 

accuracy. Different algorithms yield varying accuracy based on the feature 

extraction list. To achieve its objective through the use of binary 

arrangement. SVM excels in analyzing static features, providing high 

accuracy for detecting malware based on permissions, file properties, and 

API calls. LSTM complements SVM by focusing on dynamic features, 

such as runtime behavior and sequential API interactions, which are 

critical for detecting advanced and evasive malware.

 

 
Figure 3: Classification model for distinguishing between benign and 

malicious Android applications. 

 

After the feature selection step, the reliability of the detection model is 

based on the following parameters.  

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
x100%                              (1)                  

Sensitivity=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 x 100%                                   (2)                  

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
x 100%                                     (3)                    

F1-Score= 
2𝑥𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 𝑥 100%                     (4)                                                        

The following terms are used to describe the accuracy of a testing 

sample. True positive (TP) denotes the number of positive samples 

correctly identified as positive. False positive (FP) refers to the number of 

negative samples incorrectly classified as positive. True negative (TN) 

represents the number of negative samples accurately identified as 

negative. False negative (FN) is the number of positive samples incorrectly 
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classified as negative. To attain high performance, it is essential to 

evaluate various machine learning and deep learning algorithms. 

To evaluate our proposed framework, ‘MalDroid’ dataset is 

utilized which contains eighty-five instances whereas target column 

contains three different malware classes. We used ML (Random Forest) 

and DL (Artificial Neural Network) algorithms for classification. The 

selected dataset is preprocessed, unnecessary columns are removed and 

missing values are handled. Further, categorical data is converted into 

numeric form, finally, relevant features and target labels are separated to 

enhance the efficiency of algorithms.     

Results and Discussion 

The first step is the feature extraction and selection. It is an 

essential process that aims to choose the attributes with the highest 

accuracy while reducing complexity and avoiding overfitting. 

Historically, researchers have used various techniques to categorize 

features to identify malware in apps as shown in Table 1. For this attempt, 

the feature-overgrown strategy is specifically chosen which selects the 

necessary features to build malware detection models. The most highly 

ranked features are considered and defined. 

 
Table 1: Sample of efficient feature selection) 

Features Analysis type Feature type Details 

.DEX file Dynamic Behavior based Process extraction 

Task Intents Static Signature based Internal words 

Process ID Static Behavior based Process tracking 

SMS Static Signature based Opcode verification 

Power Usage Static Behavior based Hashing tricks 

Log files Dynamic Behavior based Process monitor 

 

The performance of the Random Forest and Artificial Neural 

Network (ANN) models is evaluated on the chosen dataset using four key 

metrics: Accuracy, Precision, Recall, and F1 Score. Below is an analysis 

of the results presented in Table 2. 

Table 2: Performance Metrics Table. 

Metric Random Forest ANN 

Accuracy 88.89% 90.12% 

Precision 89.18% 90.28% 

Recall 88.89% 90.12% 

F1 Score 88.77% 89.96% 
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Figure 4 compares visually these metrics for both models. Each 

group of bars represents a specific metric (Accuracy, Precision, Recall, 

and F1 Score), with one bar for Random Forest and other for ANN. 

 

  
Figure 4: Comparative analysis using Machine learning and deep learning 

Models. 

 

The analysis reveals that while both Random Forest and ANN are 

effective in classifying the dataset, ANN outperforms Random Forest in 

all evaluated metrics. This makes ANN a preferable choice for this 

classification task, as it captures complex patterns in the data slightly 

better. 

By joining static and dynamic analysis, the PRO-Net framework 

compromises a significant improvement in Android malware detection 

that ensures compatibility with both high-end and low-resource devices. 

Contrasting existing methods like Zhu's static analysis or Akbar's 

permissions-based detection, which lack runtime behavior monitoring, 

PRO-Net integrates sandbox-based dynamic analysis to detect evasive 

malware more efficiently and effectively. Its feature extraction approach 

integrates lightweight and advanced techniques, addressing the 

weaknesses of models like Alkahtani's, which emphasize dataset diversity 

but overlook real-time detection. However, PRO-Net's reliance on binary 

classification may limit its ability to identify unknown malware families 

compared to heuristic or clustering methods, as suggested by Djenna. 

While its precision and scalability make it versatile and robust, further 

optimization for potential threats and dataset expansion could augment its 

generalizability and reliability. 
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Conclusion 

The proposed PRO-NET framework employs a triple-feature 

extraction technique that helps to identify potentially malicious behavior 

in the Android environment. It doesn't rely on label datasets but also 

focuses on feature engineering techniques to extract relevant features such 

as file properties, system calls, API calls, network traffic patterns and 

permissions requested by applications. By cautiously choosing and 

designing these important features, the framework trains a model to detect 

suspicious patterns. Dynamic behavioral analysis techniques are used to 

observe the runtime behavior of applications, after analyzing static 

behavior. This technique can detect malicious activities based on actions 

performed by the application, such as unauthorized access to personal data 

or suspicious network communications. The proposed PRO-Net 

framework has shown promising results in detecting Android based 

malware. However, there are areas for further exploration: Incorporate 

additional datasets representing emerging malware threats to enhance 

model generalization, Optimize the framework for low-end Android 

devices, ensuring scalability and efficiency across varying hardware 

configurations. It is the need of hour to explore clustering techniques to 

identify unknown malware families without relying on labeled data. To 

improve detection accuracies, the theme is evaluated using both 

supervised and unsupervised deep learning algorithms and advanced 

technologies, with and without labeled data, to detect new and highly 

dangerous malware. 
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