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Abstract 
Unsteady Stokes flow of a non-Newtonian fluid is the time-dependent motion of a 

fluid where inertial forces are negligible and the fluid exhibits non-Newtonian 

behaviour, which means that its viscosity is not constant and can depend upon 

factors such as the rate of strain, time, or fluid history. Non-Newtonian fluids, 

including viscoelastic and shear-thinning, are used in many applications, 

particularly in the flow of blood, synovial fluids, and mucus, as well as in industry 

like polymer extrusion and oil recovery. The current research is based on the 

unsteady Stokes flow of a non-Newtonian fluid in parallel porous plates with 

periodic injection and suction at the plates under no slip conditions. The 

governing equations are solved analytically using the stream function, and the 

velocity components and pressure distribution are examined. The findings 

demonstrate that non-Newtonian fluids behave very differently from Newtonian 

fluids in porous channels. The graphical representations of the physical outcomes 

provide valuable insights into the behavior of non-Newtonian fluids in porous 

channels. The main finding of this research indicates that the volume flow rate is 

not affected by the different parameters. This result provides a useful guideline 

for designing channels with porous walls for the transport of non-Newtonian 

fluids. The exact solution obtained in this research represents a generalization of 

previous studies when a non-Newtonian parameter approaches zero. 

Keywords: Non-Newtonian Fluid;  Unsteady Laminar Flow; Porous Plates; 

Periodic Injection and Suction;  No Slip Conditions.  

Introduction 

The most significant area of physics is fluid mechanics, which has 

a significant impact on how we live our daily lives. The vast majority of 

fluids that engineers and scientists work with, including air, water, and 

oils, may generally be thought of as Newtonian. However, the 

considerably more complicated non-Newtonian reaction must be 

described in many situations where the assumption of Newtonian  

behaviour is erroneous. These situations can be seen in the industries that 
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produce chemicals and plastics. Applications such as lubricating and 

biomedical flows, as well as the mining industry, where slurry and mud 

are regularly handled, also exhibit non-Newtonian behaviour. Therefore, 

industry places a high value on the Modelling non-Newtonian fluid flow. 

Unsteady flow has received a lot of attention and impact due to its 

applicability to many sorts. This occurs during the lubrication process, in 

lava, paint, viscous polymers, swimming of microorganisms. 

Navier (1823) introduced a slip boundary condition where the 

shear rate at the wall determines the relative velocity of the fluid with the 

wall. Molecular calculations were used to develop Navier-slip. The 

Berman (1952) was the pioneer who addressed the problem of steady flow 

of an in-compressible viscous fluid via a porous rectangular channel in the 

situation of low Reynolds number. By using the assumption that the 

normal wall velocities are the same, he found a perturbation solution. 

Following this, Sellars (1955) went on to further investigate the similar 

issue for the situation of a high Reynolds number. Gradually, (Yuan, 1956) 

formalised this problem for a range of injection and suction Reynolds 

numbers. Terrill (1965) analysed this problem, taking into account various 

normal velocities at the walls. Drake (1965) investigated the cross-

sectional flow of an in-compressible viscous fluid caused by a periodic 

pressure gradient. Bagchi researched the transient pressure gradient and 

viscoelastic Maxewell fluid flow in a rectangular channel. 

Bhutto et al. (2023) and Khokhar et al. (2023) have investigated 

that magnetic fields interact with viscous fluid flows under different 

stream profiles, providing insights into velocity distributions, boundary 

layer effects, and stability considerations. The mentioned studies are 

meant to provide further insight into the unsteady stokes flow of 

Newtonian and non-Newtonian fluid across two parallel porous plates. 

The various works (Berman, 1952; Narasimhan, 1961; Sellars, 

1955; Donoughe, 1956; Erdogan et al., 2004; Erdogan, 1997) are restricted 

to a knowledge of the problem related to flow in porous channels under 

different situations that is simply mathematical. There is further 

information that supports this article and my research strategy, including 

two publications on the topics of unsteady in-compressible Stokes flow in 

porous pipes and porous channel with periodic suction and injection under 

slip conditions that were both published (Bhatti et al., 2017; Bhatti et al., 

2018) . Ganesh (2007) have already addressed this article’s problem for 

the Newtonian case, and we expanded the same work for the non-

Newtonian fluid. Suction and injection in tubes play an important role in 

different fields, including fluid mixing, biological systems, and filtration 

processes. In fluid mixing, they help achieve uniform blending of liquids 

or gases in confined spaces, which is important for chemical reactions and 
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industrial processes (Nienow et al., 1997). In biological systems, these 

techniques are used in microfluidic devices for tasks like delivering 

nutrients, sampling fluids, or studying cellular behavior with precision 

(Sivagnanam & Gijs, 2013). In filtration, suction pulls fluids through fine 

membranes for purification, while injection can introduce cleaning agents 

to maintain filter performance (Wagner, 2001). These processes offer 

precise control, making them essential tools in both scientific research and 

practical applications. 

Nomenclature 

𝑢 Axial velocity component (m/s) 

𝑣 Radial velocity component (m/s) 

𝑡 Time (s) 

𝑥 Axial coordinate (m) 

𝑦 Radial coordinate (m) 

𝜇 Coefficient of viscosity (Pa·s) 

𝛼1, 𝛼2 Non-Newtonian parameters 

𝜏 Stress tensor 

𝐴1, 𝐴2 First and second Rivlin-Erickson tensors 

𝛻2 Laplacian operator 

𝜔 Frequency (Hz) 

𝐿 Length of porous plates (m) 

𝑄 Volume flow rate (m³/s) 

𝑃 Pressure (Pa) 

𝜓 Stream function 

𝜌 Density of the fluid (kg/m³) 

𝑅 Reynolds number 

𝜅 Permeability of the porous medium 

         

The parameters used in this work are significant because they 

influence the behavior of non-Newtonian fluid flow between parallel 

porous plates under suction and injection directly. Parameters like the non-

Newtonian coefficient, viscosity, and frequency determine the axial and 

radial velocity profiles, highlighting the complex interactions between 

fluid and porous medium. These parameters allow the study to generalize 

previous Newtonian fluid models and explore new dynamics in non-

Newtonian flows. 

Second Grade Fluid Model 

A second-grade fluid is a kind of non-Newtonian fluid that is 

distinguished by a constitutive relation that considers the fluid’s earlier 

deformation in addition to its current rate of strain. Second-grade fluids 
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show a more complex relationship between stress and strain, including 

higher-order derivatives of the velocity field, in contrast to Newtonian 

fluids, where the stress is proportionate to the rate of strain. 

Mathematically, The stress tensor 𝑇 can be defined as: 

𝑇 = −𝑝𝐼 + 𝜇𝐴1 + 𝛼1𝐴2 + 𝛼2𝐴1
2,                             (1) 

Where 𝜇  is the co-efficient of viscosity, 𝛼1  and 𝛼2  are the non-

Newtonian parameters. 𝐴1  and 𝐴2  are the first and second Rivlin-

Erickson tensors defined as follows:  

𝐴1 = 𝛻𝑉 + (𝛻𝑉)𝑇 ,                                          (2) 

  

𝐴2 =
𝜕𝐴1

𝜕𝑡
+ (𝑉. 𝛻)𝐴1 + (𝐴1)(𝛻𝑉) + (𝛻𝑉)𝑇(𝐴1).                (3) 

Governing Equations 

The governing equations for an in-compressible flow of the 

second-grade fluid by neglecting the thermal effect and body forces are 

represented by the following:  

𝛻. 𝑉 = 0,                                                     (4)  

𝜌
𝐷𝑉

𝐷𝑡
= 𝑑𝑖𝑣𝑇,                                                 (5)  

Where, 
𝐷𝑉

𝐷𝑡
 is material time derivatives, and it is described as:  

𝐷(∗)

𝐷𝑡
=

𝜕(∗)

𝜕𝑡
+ 𝑉. 𝛻(∗),                                        (6)  

Using (1) in (5) we get the vector form of (5) in the following form:  

𝜌
𝐷𝑉

𝐷𝑡
= −𝛻𝑝 + 𝜇𝛻2𝑉 + 𝛼1 [

𝜕

𝜕𝑡
𝛻2𝑉 + 𝛻2(𝛻 × 𝑉) + 𝑔𝑟𝑎𝑑 (𝑉. 𝛻2𝑉 +

1

4
|𝐴1

2|)] + (𝛼1 + 𝛼2)𝑑𝑖𝑣|𝐴1
2|, (7)  

Where, 𝛻2  denote the laplacian ,and |𝐴1
2| = 𝑡𝑟[𝐴1𝐴1

𝑡 ]  in the case of 

unsteady plane coordinates we take,  

𝑣 = (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)),                                        (8) 

Where, 𝑢 and 𝑣 represent the axial and radial components of velocity, 

respectively, putting (8) in (4) and (2) we obtain the following equations 

as:  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                               (9)  

𝑥-Component 

𝜌
𝜕𝑢

𝜕𝑡
− 𝜌𝑣𝛺 =

𝜕𝑝∗

𝜕𝑥
+ 𝜇𝛻2𝑢 + 𝛼1

𝜕

𝜕𝑡
(𝛻2𝑢) − 𝛼1𝑣𝛻2𝛺,         (10) 

𝑦-Component 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑢𝛺 =

𝜕𝑝∗

𝜕𝑦
+ 𝜇𝛻2𝑣 + 𝛼1

𝜕

𝜕𝑡
(𝛻2𝑣) + 𝛼1𝑢𝛻2𝛺.        (11) 

Where 𝑝∗ , |𝐴1
2| and 𝛺 are define as:  
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𝑝∗ = −𝑝 +
𝜌

2
(𝑢2 + 𝑣2) + 𝛼1(𝑢𝛻2𝑢 + 𝑣𝛻2𝑣) +

1

4
(3𝛼1 + 2𝛼2)|𝐴1

2|,  

|𝐴1
2| = 𝑡𝑟[𝐴1𝐴1

𝑡 ] = 8(
𝜕𝑢

𝜕𝑥
)2 + 2(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)2, 

𝛺 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
. 

Problem Description 

Consider an in-compressible flow between parallels porous plates 

at 𝑦 = 0 and 𝑦 = 𝐿 in the direction of the 𝑥 -axis. We assume Stokes 

flow with periodic injection and suction with velocity 𝑣1𝑒𝑖𝑤𝑡  on the 

lower and 𝑣2𝑒𝑖𝑤𝑡 on the upper plates respectively, where 𝑣1 and 𝑣2 are 

constant and 𝑤 is the frequency which has been shown in the Figure 1. 

 

 
Figure1: Unsteady stokes flow for Non-Newtonian fluid Parallel Porous Plate. 

Problem Solution 

Consider 𝑢 and 𝑦 to be the flow field’s axial and radial velocity 

vectors, respectively, at any time 𝑡 and choose velocity vector 𝑞 (Ganesh 

et al., 2007) which can be written as:  

�̄� = [𝑢(𝑥, 𝑦)𝑖̂ + 𝑣(𝑥, 𝑦)𝑗̂]𝑒𝑖𝑤𝑡, 

𝑢 = 𝑢(𝑥, 𝑦)𝑒𝑖𝑤𝑡 ,  𝑣 = 𝑣(𝑥, 𝑦)𝑒𝑖𝑤𝑡, 

𝑃 = 𝑝(𝑥, 𝑦)𝑒𝑖𝑤𝑡 .                                          (12)  

The equation of continuity and equations of motion for non-Newtonian 

fluid can be reduced to the following by neglect the convective terms from 

(10) and (11) due to very small Reynolds number. This is mainly due to 

the assumptions of the Stokes flow regime, where inertial effects are 

negligible compared to viscous forces.  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
= 0,                                            (13)  

𝜌
𝜕𝑢

𝜕𝑡
=

𝜕𝑝∗

𝜕𝑥
+ 𝜇𝛻2𝑢 + 𝛼1

𝜕

𝜕𝑡
(𝛻2𝑢) − 𝛼1𝑣𝛻2𝛺,                 (14)  
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𝜌
𝜕𝑣

𝜕𝑡
=

𝜕𝑝∗

𝜕𝑦
+ 𝜇𝛻2𝑣 + 𝛼1

𝜕

𝜕𝑡
(𝛻2𝑣) + 𝛼1𝑢𝛻2𝛺.                  (15)  

The boundary condition of the problem are:  

𝑢(𝑥, 0) = 0,  𝑢(𝑥, 𝐿) = 0,                                   (16)  

𝑣(𝑥, 0) = 𝑣1,  𝑣(𝑥, 𝐿) = 𝑣2,                                 (17)  

Where 𝐿 is length of parallel porous plates. The incompressibility of the 

fluid, no-slip boundary conditions, and steady periodic injection and 

suction at the plates suggests introducing the stream function 𝜓 (x,y) as:  

𝑢(𝑥, 𝑦) =
𝜕𝜓

𝜕𝑦
 𝑎𝑛𝑑 𝑣(𝑥, 𝑦) = −

𝜕𝜓

𝜕𝑥
,                        (18)  

As continuity equation (13) is satisfied. Equations (14) and (15) can be 

written as: 

𝜌𝑖𝜔𝑢𝑒𝑖𝑤𝑡 = 𝑒𝑖𝑤𝑡
𝜕𝑝∗

𝜕𝑥
+ 𝑒𝑖𝑤𝑡𝜇𝛻2𝑢 + 𝑒𝑖𝑤𝑡𝛼1𝑖𝜔(𝛻2𝑢) − (𝑒𝑖𝑤𝑡)2𝛼1𝑣𝛻2𝛺 

𝜌𝑖𝜔𝑢 =
𝜕𝑝∗

𝜕𝑥
+ 𝜇𝛻2𝑢 + 𝛼1𝑖𝜔(𝛻2𝑢) − 𝛼1𝑒𝑖𝑤𝑡𝑣𝛻2𝛺,          (19)  

𝜌𝑖𝜔𝑣𝑒𝑖𝑤𝑡 = 𝑒𝑖𝑤𝑡
𝜕𝑝∗

𝜕𝑦
+ 𝑒𝑖𝑤𝑡𝜇𝛻2𝑣 + 𝑒𝑖𝑤𝑡𝛼1𝑖𝜔(𝛻2𝑢) − (𝑒𝑖𝑤𝑡)2𝛼1𝑣𝛻2𝛺 

𝜌𝑖𝜔𝑣 =
𝜕𝑝∗

𝜕𝑦
+ 𝜇𝛻2𝑣 + 𝛼1𝑖𝜔(𝛻2𝑣) + 𝛼1𝑖𝑒𝑖𝑤𝑡𝑢𝛻2𝛺,        (20)  

 and also  

𝛺 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
, 

𝛺 = −
𝜕2𝜓

𝜕𝑥2 −
𝜕2𝜓

𝜕𝑦2, 

𝛺 = −𝛻2𝜓,                                                (21)  

Using (18) and (21) in equations (19) and (20) we have  

𝑖𝜔
𝜕𝜓

𝜕𝑦
=

1

𝜌

𝜕𝑝∗

𝜕𝑥
+ 𝜈𝛻2 (

𝜕𝜓

𝜕𝑦
) +

𝛼1

𝜌
𝑖𝜔𝛻2 (

𝜕𝜓

𝜕𝑦
) −

𝛼1

𝜌
𝑒𝑖𝑤𝑡 𝜕𝜓

𝜕𝑥
(𝛻4𝜓),    (22)  

−𝑖𝜔
𝜕𝜓

𝜕𝑥
=

1

𝜌

𝜕𝑝∗

𝜕𝑥
− 𝜈𝛻2 (

𝜕𝜓

𝜕𝑥
) −

𝛼1

𝜌
𝑖𝜔𝛻2 (

𝜕𝜓

𝜕𝑥
) −

𝛼1

𝜌
𝑒𝑖𝑤𝑡 𝜕𝜓

𝜕𝑦
(𝛻4𝜓).  (23)  

Partially differentiating (22) with respect to ’y’ we get  

𝑖𝜔
𝜕2𝜓

𝜕𝑦2 =
1

𝜌

𝜕2𝑝∗

𝜕𝑥𝜕𝑦
+ 𝜈

𝜕

𝜕𝑦
[𝛻2 (

𝜕𝜓

𝜕𝑦
)] +

𝛼1

𝜌
𝑖𝜔

𝜕

𝜕𝑦
[𝛻2 (

𝜕𝜓

𝜕𝑦
)] −

𝛼1

𝜌
𝑒𝑖𝑤𝑡 𝜕2𝜓

𝜕𝑥𝜕𝑦
(𝛻4𝜓),  

𝜕2𝑝∗

𝜕𝑥𝜕𝑦
= 𝜌𝑖𝜔

𝜕2𝜓

𝜕𝑦2
− 𝜇

𝜕

𝜕𝑦
[𝛻2 (

𝜕𝜓

𝜕𝑦
)] − 𝛼1𝑖𝜔

𝜕

𝜕𝑦
[𝛻2 (

𝜕𝜓

𝜕𝑦
)] + 

𝛼1𝑒𝑖𝑤𝑡
𝜕2𝜓

𝜕𝑥𝜕𝑦
(𝛻4𝜓).                                       (24) 

Partially differentiating (23) with respect to ’x’ we get  

−𝑖𝜔
𝜕2𝜓

𝜕𝑥2 =  
1

𝜌

𝜕2𝑝∗

𝜕𝑥𝜕𝑦
− 𝜈

𝜕

𝜕𝑥
[𝛻2(

𝜕𝜓

𝜕𝑥
)] −

𝛼1

𝜌
𝑖𝜔

𝜕

𝜕𝑥
[𝛻2(

𝜕𝜓

𝜕𝑥
) −

𝛼1

𝜌
𝑒𝑖𝑤𝑡 𝜕2𝜓

𝜕𝑥𝜕𝑦
(𝛻4𝜓)  
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2𝑚𝑚
𝜕2𝑝∗

𝜕𝑥𝜕𝑦
= −𝜌𝑖𝜔

𝜕2𝜓

𝜕𝑥2 + 𝜇
𝜕

𝜕𝑥
[𝛻2(

𝜕𝜓

𝜕𝑥
)] + 𝛼1𝑖𝜔

𝜕

𝜕𝑥
[𝛻2(

𝜕𝜓

𝜕𝑥
)] +

 𝛼1𝑒𝑖𝑤𝑡 𝜕2𝜓

𝜕𝑥𝜕𝑦
(𝛻4𝜓).                                          (25) 

The result obtained by eliminating the pressure 𝑝 from the equations (24) 

and (25) is  

0 = 𝜌𝑖𝜔(𝛻2𝜓) − (
𝜕4𝜓

𝜕𝑥4 + 2
𝜕4𝜓

𝜕𝑥2𝜕𝑦2 +
𝜕4𝜓

𝜕𝑦4) (𝜇 + 𝛼1𝑖𝜔),  

0 = (𝛻2𝜓) − (
𝜕4𝜓

𝜕𝑥4 + 2
𝜕4𝜓

𝜕𝑥2𝜕𝑦2 +
𝜕4𝜓

𝜕𝑦4) (
𝛼1𝑖𝜔+𝜇

𝜌𝑖𝜔
).                (26)  

The function f(𝜂) is introduced as:  

𝜓(𝑥, 𝑦) = (𝐿
𝑢0

𝑎
− 𝜈2𝑥) 𝑓(𝜂),                              (27) 

Where 𝜂 =
𝑦

𝐿
, 𝑎 = 1 −

𝑣1

𝑣2
, 0 ≤ 𝑣1 ≤ 𝑣2  and 𝑢0  is the average entrance 

velocity. Equation (27) can be rewritten as:  

(𝐿
𝑢0

𝑎
− 𝜈2𝑥)

𝑓′′
(𝜂)

𝐿2 − (𝐿
𝑢0

𝑎
− 𝜈2𝑥)

𝑓𝑖𝑣(𝜂)

𝐿4 (
𝜇+𝛼1𝑖𝜔

𝜌𝑖𝜔
) = 0, 

𝑓′′
(𝜂)

𝐿2 −
𝑓𝑖𝑣(𝜂)

𝐿4 (
𝜇+𝛼1𝑖𝜔

𝜌𝑖𝜔
) = 0, 

𝑓𝑖𝑣(𝜂) − (
𝐿2𝜌𝑖𝜔

𝛼1𝑖𝜔+𝜇
)𝑓′′

(𝜂) = 0, 

𝑓𝑖𝑣(𝜂) − 𝛽2𝑓′′
(𝜂) = 0,                            (28)  

Where 𝛽2 = (
𝐿2𝜌𝑖𝜔

𝛼1𝑖𝜔+𝜇
).  As equation (28) is forth order ordinary 

homogeneous linear differential equation and can be solved by converting 

it into auxiliary equation as:  

𝑚2(𝑚2 − 𝛽2) = 0, 

𝑚 = 0,0, 𝛽, −𝛽. 

𝑓(𝜂) = 𝐶1 + 𝐶2𝜂 + 𝐶3𝑒𝛽𝜂 + 𝐶4𝑒−𝛽𝜂 ,                        (29) 

The following are the boundary conditions for f(𝜂):  

𝑓(0) = 1 − 𝑎, 𝑓(1) = 1 𝑎𝑛𝑑 𝑓′(0) = 𝑓′(1) = 0           (30)  

Finding the values of 𝐶1 to 𝐶4 by using the boundary conditions (30) as: 

𝐶1 = 1 − 𝑎 −
𝑎(𝑒𝛽+𝑒−𝛽−2)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
, 𝐶2 =

𝑎𝛽(𝑒𝛽−𝑒−𝛽)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
, 

𝐶3 =
𝑎(𝑒−𝛽−1)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
, 𝐶4 =

𝑎(𝑒𝛽−1)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
. 

Substituting the values of constants in (29)  

𝑓(𝜂) = 1 − 𝑎 −
𝑎(𝑒𝛽+𝑒−𝛽−2)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
+

𝑎𝛽(𝑒𝛽−𝑒−𝛽)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
𝜂  

+
𝑎(𝑒−𝛽−1)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
𝑒𝛽𝜂 +

𝑎(𝑒𝛽−1)

4+𝑒𝛽(𝛽−2)−𝑒−𝛽(𝛽+2)
𝑒−𝛽𝜂, 

Above equation can be written as:  

𝑓(𝜂) = 1 − 𝑎 −
2𝑎

2+𝛽 𝑠𝑖𝑛ℎ(𝛽)−2 𝑐𝑜𝑠ℎ(𝛽)
[𝑐𝑜𝑠ℎ( 𝛽) − 𝛽𝜂 𝑠𝑖𝑛ℎ( 𝛽)  
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+ 𝑐𝑜𝑠ℎ( 𝛽𝜂) − 𝑐𝑜𝑠ℎ 𝛽 (𝜂 − 1) − 1]. 
Stream function is described as:  

𝜓(𝑥, 𝑦) = (𝐿
𝑢0

𝑎
− 𝜈2𝑥)𝑓(𝜂), 

𝑢(𝑥, 𝑦) =
𝜕𝜓

𝜕𝑦
 𝑎𝑛𝑑 𝑣 = −

𝜕𝜓

𝜕𝑥
, 

𝑢 = (
𝑢0

𝑎
−

𝜈2𝑥

𝐿
)𝑓′(𝜂)  

𝑢(𝑥, 𝑦) = (
𝑢0

𝑎
−

𝜈2𝑥

𝐿
)[

−𝛽𝑎

2+𝛽 𝑠𝑖𝑛ℎ(𝛽)−2 𝑐𝑜𝑠ℎ(𝛽)
](𝑠𝑖𝑛ℎ( 𝛽𝜂) − 𝑠𝑖𝑛ℎ 𝛽 (𝜂 −

1) − 𝑠𝑖𝑛ℎ( 𝛽)) , 

As 𝑢 = 𝑢(𝑥, 𝑦)𝑒𝑖𝜔𝑡 and 𝑥∗ =
𝑥

𝐿
 then  

𝑢 = (
𝑢0

𝑎
− 𝜈2𝑥∗)[

−𝛽𝑎

2+𝛽 𝑠𝑖𝑛ℎ(𝛽)−2 𝑐𝑜𝑠ℎ(𝛽)
](𝑠𝑖𝑛ℎ( 𝛽𝜂) − 𝑠𝑖𝑛ℎ 𝛽 (𝜂 − 1) −

𝑠𝑖𝑛ℎ( 𝛽))𝑒𝑖𝜔𝑡 ,                                             (31)  

and also  

𝑣 = −
𝜕𝜓

𝜕𝑥
, 𝑣 = −𝑣2𝑓(𝜂), 

then  

𝑣(𝑥, 𝑦) = −𝑣2(1 − 𝑎 −
2𝑎

2+𝛽 𝑠𝑖𝑛ℎ(𝛽)−2 𝑐𝑜𝑠ℎ(𝛽)
)[𝑐𝑜𝑠ℎ( 𝛽) − 𝛽𝜂 𝑠𝑖𝑛ℎ( 𝛽) 

+ 𝑐𝑜𝑠ℎ( 𝛽𝜂) − 𝑐𝑜𝑠ℎ 𝛽 (𝜂 − 1) − 1], 
as 𝑣 = 𝑣(𝑥, 𝑦)𝑒𝑖𝜔𝑡 then  

𝑣 = −𝑣2(1 − 𝑎 −
2𝑎

2+𝛽 𝑠𝑖𝑛ℎ(𝛽)−2 𝑐𝑜𝑠ℎ(𝛽)
)[𝑐𝑜𝑠ℎ( 𝛽) − 𝛽𝜂 𝑠𝑖𝑛ℎ( 𝛽)  

 + 𝑐𝑜𝑠ℎ( 𝛽𝜂) − 𝑐𝑜𝑠ℎ 𝛽 (𝜂 − 1) − 1]𝑒𝑖𝜔𝑡 ,                   (32) 

For special case we represent the velocity profile (31) and (32) derived by 

putting 𝛼1 = 0 in the value of 𝛽 and get the same result which achieved 

by (Ganesh et al., 2007) in his article. 

Pressure Distribution 

Using the velocity components (31) and (32), the pressure 

components may be determined as:  

𝑝∗ = −𝑝 +
𝜌

2
(𝑢2 + 𝑣2) + 𝛼1(𝑢𝛻2𝑢 + 𝑣𝛻2𝑣) +

1

4
(3𝛼1 + 2𝛼2)|𝐴1

2|, 

Where |𝐴1
2| = 𝑡𝑟[𝐴1𝐴1

𝑡 ] = 8(
𝜕𝑢

𝜕𝑥
)2 + 2(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)2. 

Results and Discussion 

The values of the axial and radial velocities were computed for 

different values of 𝑤𝑡, The findings are displayed in Figures 2, 3, and 4 

are the axial and Figures 4 and 5 are radial velocity profiles at different 

values of the parameters at 𝑥∗ = 2, 𝛽 = 2,4,6, 𝑎 = 2, 𝑣2 = 1,2 and the 

average entrance velocity is taken to be 𝑢0 = 0.5. It is seen clearly from 

the figures 2, 3 and 3 when we increase the value of 𝛽 from 2 to 6 then 

the velocity profiles decrease but the behavior of the velocity remain same.  
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Figure 2: Axial velocity for different values of “wt” when𝜷 = 𝟐. 

 

 
Figure 3: Axial velocity for different values of “wt” when𝜷 = 𝟒. 
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Figure 4: Axial velocity for different values of “wt” when𝜷 = 𝟔. 

 

 
Figure 5: Radial velocity for different values of “wt” when𝜷 = 𝟐. 
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Figure 6: Radial velocity for different values of “wt” when𝜷 = 𝟒. 

 

It has also been noted that the magnitude of the axial velocity 

increase at 𝑤𝑡 =
3

4
𝜋 and 𝑤𝑡 = 𝜋. The velocity has reverse flow at the 

𝑤𝑡 =
1

4
𝜋 and 𝑤𝑡 = 0. It is seen from figures 5 and 6 that if we increase 

the value of 𝛽 = 2,4 which include non-Newtonian parameter 𝛼1 then 

the radial velocity increased. It is noted that axial and radial velocities 

vanish at 𝑤𝑡 =
𝜋

2
 and non-zero on different value of 𝑤𝑡. 

The overall findings of this study provide understanding the 

behavior of unsteady flow of non-Newtonian fluids across porous media. 

The graphical representations of the velocity profiles provide a clear 

visualization of the effects of different physical parameters, including 𝛽, 

𝑣2, and 𝑤𝑡, on the fluid flow. These results can be useful for designing 

and optimizing fluid flow systems in various industrial and environmental 

applications. 

Conclusion and Future Work 

In conclusion, this study has provided an exact solution for the 

velocity fields of a non-Newtonian fluid flowing via a porous channel with 

a uniform cross section under no slip conditions. The results of this study 

shed light on the impact of the parameter 𝛽 , which includes the non-

Newtonian parameter 𝛼1, on the velocity profiles. Firstly, it was found 

that when the value of 𝛽 increases while the flow rate remains constant, 

the axial velocity on the center-line of channel decreases, while the 

velocity of the fluid layers in contact with the channel walls increases. The 
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explanation for this phenomena is that increasing the value of 𝛽 results in 

a decrease in the size of the pores between the porous medium, which leads 

to an increase in frictional forces between the fluid and the channel walls. 

Secondly, it was observed that when the non-Newtonian parameter 𝛼1 is 

set to zero in the 𝛽 parameter, the results obtained are consistent with the 

findings of a previous study by Ghanesh. This observation highlights the 

importance of the non-Newtonian parameter in the flow of non-Newtonian 

fluids through porous media. Thirdly, the study found that both the axial 

and radial velocities vanish at 𝑤𝑡 = 𝜋/2 and are non-zero at different 

values of 𝑤𝑡 . This result suggests that the velocity profiles of non-

Newtonian fluids through porous channels exhibit complex behavior, 

which should be taken into account when designing and optimizing porous 

media systems. 

Furthermore, it was noticed that as the values of the various 

parameters increase, the size of the velocities inside the channel decreases. 

This observation indicates that the flow of non-Newtonian fluids through 

porous media is highly sensitive to changes in the system parameters, and 

therefore, the optimization of these parameters is crucial to achieve 

optimal performance. Finally, the study demonstrated that non-Newtonian 

parameters and other factors have no effect on the volume flow rate. This 

result implies that the volume flow rate through porous media can be 

predicted solely based on the physical properties of the fluid and the 

geometry of the channel, which is an important finding for the design and 

optimization of porous media systems. 

This study provides valuable physical insights into the flow of 

non-Newtonian fluids through porous media, which can inform the design 

and optimization of a wide range of engineering systems, including 

filtration, separation, and heat transfer applications. 

Future research in this work may be adding thermal effects, variable 

porosity, and non-uniform suction and injection to add the understanding 

the flow of the complex non-Newtonian fluid. Extending the study to 3D 

and more complex flows like turbulent flows or experimentally validating 

of the model could be the future advancements. These would benefit the 

fields like energy, filtration, and biomedical engineering. 
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