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Abstract  

In rapidly increasing cities, rising energy demand from smart appliances needs 

effective energy management. This work uses machine learning (ML) and 

heuristic-based approaches to optimize energy usage in smart homes (SH) by 

utilizing renewable and sustainable energy resources (RSER) and energy storage 

systems (ESS). Various optimization techniques, including as genetic algorithm 

(GA), binary particle swarm optimization (BPSO), wind driven optimization 

(WDO), bacterial foraging algorithm (BFA) and genetic modified particle swarm 

optimization (GmPSO), are used to reduce electricity expenditures, peak-to-

average ratio (PAR), and carbon emissions while maintaining user comfort. 

Three energy optimization scenarios are analyzed: Condition 1, which schedules 

household appliances without renewable energy, achieves 84.09% carbon 

emission reduction, 89.23% cost savings, and 68.03% PAR reduction; Condition 

2, integrating photovoltaic (PV) systems, shows 99.88% carbon emission 

reduction, 96.80% cost savings, and 96.57% PAR reduction; and Condition 3, 

combining solar with ESS, improves load distribution and grid independence, 

reducing carbon emissions by 20.85%, 19.89% reduction in costs and 90.12% 

reduction in PAR. These findings illustrate that GmPSO outperform in producing 

sustainable and cost-effective energy saving solutions, offering useful technique 

for utility companies, regulators, and SH technology developers. 

Keywords: Machine learning; Renewable Energy; Energy Optimization; Smart 

Homes; Energy Storage Systems. 

Introduction 

Modern energy management has major issues due to the rising 

energy consumption in residential sectors, which is being driven by the 

proliferation of smart appliances and electronic devices. About 40% of all 

energy used worldwide is consumed in residential settings, underscoring 

the urgent need for creative approaches to maximize energy use(Papadakis 
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et al., 2023). Figure 1 shows the renewable energy demand increase by 

different sectors from 2023 to 2030. The traditional reliance on fossil fuels 

for energy generation exacerbates environmental issues like climate 

change and greenhouse gas emissions(Wang et al., 2024). Thus, 

combining energy storage systems (ESS) with renewable and sustainable 

energy resources (RSERs) has become a practical way to improve energy 

efficiency and lessen environmental effects. 

 

 
Figure 1: Demand increase for renewable energy by sector, primary case, 

2023–2030 (Gajdzik et al., 2024). 

 

Demand response (DR) programs, distributed renewable energy 

integration, and dynamic load control have all been made possible by 

smart grids (SG) and household energy management systems (HEMS), 

which have completely changed energy management (Al-Ghaili et al., 

2023). Machine learning (ML) techniques have shown tremendous 

potential in solving these problems by making data-driven insights for 

better decision making(Strielkowski et al.,2023). It involves optimization 

of smart home appliance scheduling (i.e., GA, BPSO, WDO, BFA, and 

GmPSO) with the fundamental objectives of minimizing energy costs and 

PAR, together with integrating HEMS with RSERs and ESS as well as 

ML to optimize energy management (Hou et al., 2024). The simulation 

results demonstrated the system's performance of significant energy cost, 

PAR, and carbon emission reduction while keeping good user comfort. 

Figure 2 shows the SH features to be controlled by the HEMS. 

The objective of this study is to develop a simple, effective HEMS 

integrated with ML to schedule the energy consumption process in the 

home in a way to decrease not only the Peak to Average Ratio (PAR) 

value, but also the level of carbon emissions produced in the home and the 

electricity costs incurred while ensuring the adequate comfort level of the 

user up to the October 2023(Huang et al., 2024).The proposed solution 

could help balance peak loads, improve grid reliability, and shape the 
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future of smart home technology and energy policy of the future. 
 

 
Figure 2: SG intelligent features (Kapse et al., 2022). 

 
The objectives and contribution of this paper are as follows: 

• HEMS: Developed an optimized home energy management system in 

SH to manage energy efficiently. 

• Reduce the costs of energy consumption, PAR, and carbon emissions 

while preserving users' comfort. 

• Suggested SH energy management with RSER and ESS integration 

• For appliance scheduling and load control, utilize advanced ML 

techniques such as GA, BFA, BPSO, WDO and GmPSO. 

• Allow the system to respond to RTP and user preferences for more 

intelligent usage of energy. 

• Proposed an integrated method of RSER, ESS, and ML techniques for 

energy optimization in a SH. 

• Demonstrated the significance of GmPSO's superiority against some 

prominent optimization techniques with respect to cost, carbon 

emission, and the reduction of measured PAR. 

• Showed the viability of an ML-based system for demand response 

within the residential energy management in addition to dynamic 

pricing adjustment. 

The rest of the paper is organized as follows: Section 2 literature 

review, while Section 3 focuses research methodology. Section 4 

discusses the proposed system architecture, while Section 5 focuses on 

machine learning-based scheduling algorithms. Section 6 spotlight on 

results and discussion, and Section 7 concludes the paper. 
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Literature Review 

In recent years, there has been an increased interest with the 

integration of RSER and ESS within the scope of residential energy 

management(Rana et al., 2023). As smart device usage and energy 

demands increase, this study investigates load optimization, EMS, and 

machine learning applications in smart homes. It emphasizes existing 

deficiencies and suggests options for development. With the advent of 

smart appliances, the demand for appropriate load management has also 

increased. Work by (Almutairi et al., 2023) for example, the proposed DR 

frameworks improved appliance scheduling by taking into account RTP 

signals and customer preferences.. These paradigms show very big drops 

in peak demand and energy prices. Yet, they often do not consider the 

integration of RSER and ESS by the EMS and the comfort of users. 

Recent developments involve user-oriented strategies such as 

reinforcement learning, which are focused on dynamically adapting 

appliance schedules according to user satisfaction with thermal comfort. 

Another example is by (Soussi et al., 2024) for load management 

optimization without sacrificing perceived quality. Nonetheless, these 

methods lack an incorporation of extended RSER and ESS systems in 

system design, and not scalable. Table 1 compares conventional systems 

to smart grids (SG) in terms of setup and network configuration. 

Table 1: A brief comparison of SG and the conventional grid (Kindong, 2024). 

Aspect Conventional Grid SG 

Energy Flow Centralized, one-way. Decentralized, bidirectional. 

Power Loss High due to centralization. Minimized via distributed generation. 

Monitoring Outdated tools. SCADA & AMI for real-time data. 

Communication Mostly wired. Wired & wireless. 

ESS Limited to pump-hydro. Decentralized storage integration. 

RESR Mainly hydro. Diverse sources (solar, wind, etc.). 

Maintenance Reactive, time-based. Proactive, real-time. 

Consumer Role Passive. Engaged via net metering & pricing. 

Power Quality Reduces outages. Ensures stability. 

 
Overall, traditional optimization approaches such as LP, ILP, and 

MILP (Xiao, 2024)have been largely employed in EMS investigations. 

Heuristic algorithms address delayed convergence and scalability 

concerns in appliance scheduling, whereas RSER and ESS integration in 

EMS lowers carbon footprints by reducing reliance on fossil 

fuels(Farghali et al., 2023). Despite notable progress, there are still 

obstacles in the way of developing comprehensive and scalable EMS 

solutions. The majority of research places a higher priority on energy and 

cost efficiency rather than on user comfort and preferences (Bakare et 

al.,2023). Future research should focus on developing scalable EMS that 
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use heuristic algorithms and machine learning to improve grid resilience 

and energy management by integrating RSER and ESS(Lee et al., 2024). 

This study investigates a smart system capable of two-way communication 

for dynamic pricing and real-time demand response. 

 

 
Figure 3: An example of an intelligent distribution network (Arritt & Dugan, 

2011). 

The existing communication technologies allow the service 

provider to charge customers time-varying fees, including time-of-use and 

real-time charges. The two primary types of real-time pricing are day-

ahead and hour-ahead prices (Kim et al.,2024). Time-of-use pricing in SG 

is based on modern communication enabling real-time control, with 

wireless providing cost-effectiveness and cable maintaining dependable 

connectivity, as illustrated in Figure 3 and Table 2. SG improves 

dependability and safety by incorporating renewable energy, remote 

monitoring for early issue detection, and low-cost sensors to ensure a 

secure power supply. 

Table 2:  Technologies for SG communications. 
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GSM 900-1800 MHz Up to 14.3 Kbps 1-10 km Wi-Fi, DR, AMI High tariffs for small 

data. 

GPRS 800-1800 MHz Up to 168 Kbps 1-9 km AMI, HAN, DR Lower analysis rates. 

3G 1.92-2.17 GHz 384 Kbps–2Mbps 1-10 km AMI, HAN, DR High cost. 

WiMAX 2.5-5.8 GHz 75+ Mbps 1–50 km DR, AMI None listed. 

PLC 1-30 MHz 2–3 Mbps 1-3 km Scam prevention, MI Poor performance in 
noisy environments. 

ZigBee 868 MHz-2.4 GHz Up to 250 Kbps 30-50 m AMI, HAN Short range, small 

data capacity. 
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Research Methodology 

Understanding the energy consumption difficulties in SHs enables 

effective load management and optimization. A MATLAB-based SH 

model that relates to a power grid and a photovoltaic (PV) system uses 

machine learning approaches to optimize energy consumption and 

evaluate performance. This study systematically creates an OHEMS 

employing RSERs, ESS and machine learning to optimize residential 

energy use, address escalating demand, and improve grid stability in 

distributed SG applications. 

The main objectives of our research are two-fold: 

• For residential sector: with ESS and RSER. 

• Appliance scheduling to control resource usage and energy 

consumption 

Table 3: Comparison of home energy systems and SG energy management 

techniques. 
Method Domain Targeted Goal Results Observations 

LP 

Machiwa et al., 2024 

EMS Lower PAR, electricity 

expenses 

ESS charged off-

peak, discharged 
on-peak 

No RSER used 

ILP 
Adouani et al., 2024 

RSER Lower peak loads, 
electricity bills 

RSER reduces 
costs, peak loads 

ESS and UC not 
considered in 

optimization 

MILP 
Abdel-Aal, 2024 

 

RSER, 
HEMS, grid 

systems 

Minimize costs, PAR Reduces electricity 
costs, PAR 

Not feasible for 
small-scale users 

PSO-ANN, LSA-
ANN 

Deligkaris, 2024 

Appliance 
scheduling, 

HEMS 

Compare LSA-ANN vs 
PSO-ANN for energy 

cost reduction 

LSA-ANN 
outperforms PSO-

ANN 

Does not address 
UC or PAR 

reductions 

PSO, K-WDO, WDO 
Qian et al., 2024 

Appliance 
scheduling 

Optimize UC, reduce 
energy costs 

K-WDO balances 
UC, cost 

RES 
underutilized 

RL Fully 

automated 

energy EMS 

Optimize appliance 

times, lower PAR 

Reduces expenses, 

avoids new peaks 

No RSER or UC 

in optimization 

GA Renewable 

EMS 

Lower electricity costs, 

PAR 

Clusters 

appliances to 

prevent new peaks 

RSER ignored, 

UC compromised 

PSO, GA 

Saad et al., 2024 

Appliance 

scheduling 

Optimize appliance 

operation times 

GA-based 

scheduling saves 

money 

Trade-offs b/w 

electricity costs 

& UC 

Photovoltaic System Energy Generation Model 

The main RESR for the smart prosumer's house in the planned 

HEMS is a rooftop solar PV system. This technology makes sustainable 

energy more accessible by utilizing the sun's plentiful energy and 

inexpensive running costs. The upper atmosphere of Earth gets about 

174,000 TW of solar radiation (Ahmad et al., 2017). To optimize this 

resource, the system utilizes daily solar insolation values between 3.5 and 
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7.0 kWh/m2, which guarantees effective energy production. This system 

is set up to accomplish multiple things: 

• Reduce household electricity bills. 

• Abating carbon emissions to meet the sustainable energy goals. 

• Decrease the PAR for better energy distribution. 

To calculate the output power of a PV system Ypv(t) in Equation 

1, expressed in kilowatts at a given time t, the following formula can be 

used (Tafti et al., 2017).  

Ypv(t) = npv. Apv. Ir(t). (1 − 0.005(Tß(t) − 25)) ∀  t              (1)      

Where, npv is the energy conversion efficiency of PV system, 

Apv is the state of the generator zone (m2), Ir(t) is the solar radiation at 

time t (kWh/m2), Tß(t)  is the external temperature (∘C) at time t, 25 

degrees centigrade is the standard temperature, and 0.005 is the factor used 

for temperature adjustment. 

The unimodal distribution functions can be modelled using the Weibull 

probability density function, expressed as in Equation 2 (Alshanbari et al., 

2024): 

f(Ir(t)) = ζ (
α1

β1
) (

Ir(t)

β1
) α1−1e

−(
Ir
β1

)
α1

+ 

 (1 − ζ) (
α2

β2
) (

Ir(t)

β2
)

α2−1

e
−(

Ir

β2
)

α2

, 0 < 𝐼𝑟(t) < ∞                       (2)                                      

Here ζ is the weighted contribution of each distribution, whereas α1, α2 

define their forms and β1, β2 are their scale parameters. 

Energy Storage Model 

ESS increases efficiency by storing excess solar energy while 

controlling charge limitations, self-discharge, and losses, resulting in 

realistic energy time management, as defined in Equation 3 (Shariati et al., 

2024). 

ES(t) = ES(t − 1) + k. nESS. EPZH(t) − k.
EPDZH(t)

nESS  ∀ t        (3) 

In this model, the time slot duration (k) indicates the length of each 

scheduling period in hours. 𝐸𝑃𝑍𝐻 (in kW) represents the power provided 

to the Energy Storage System (ESS) from Renewable and Sustainable 

Energy Resources (RSER) at any given moment.  𝐸𝑃𝐷𝑍𝐻  refers to the 

power (in kW) delivered by the ESS to meet load demands. ESS efficiency 

( nESS ) accounts for energy losses during charging and discharging, 

resulting in effective energy management. 

The ESS's lifespan, dependability, and optimal performance can 

all be increased by staying within its suggested charge and discharge 

limitations (Equations 4 to 6). 
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        EPZH(t) ≤ EPUB
ZH                                               (4)                                                         

EP(t)DZH ≤ EPLB
DZH                                           (5)                                       

ES(t) ≤ ESUB                                                                 
ZH   (6) 

In the above, the ESS minimum discharge rate is  EPLB
DZH , while its 

maximum charging rate is ESUB
ZH . Additionally,  ESUB

ZH   determines the 

ESS's maximum energy storage capacity. 

Model of Energy Consumption 

Future smart grids will optimize energy use by dynamically 

scheduling shiftable and non-shiftable appliances throughout a 24-hour 

period, assuring cost efficiency and balanced consumption. 

Ea = ∑ (∑ Et
a, a ∊ A) =a

A=1
24
t=1 {Et1

a , a ∊ +Et24
a , a ∊ + ⋯ + Et24

a , a ∊ A}(7)  

Eb = ∑ (∑ Et
b, b ∊ B =b

B=1
24
t=1 {Et1

b , b ∊ B + Et2
b , b ∊ B + ⋯ + Et24

b , b ∊

B}      (8)       

           Etotal = ∑ (∑ 𝐸𝑡
𝑎 , a ∊ Aa

A=1
24
t=1 + ∑ Et

b,n
M b ∊ B)                              (9)                            

Peak-to-Average Ratio 

PAR evaluates energy demand changes over a 24-hour period, 

with a lower PAR suggesting stable consumption and reduced grid stress. 

PAR is derived by comparing peak and average loads from numerous 

users. 

PAR =

max(Etotal  (t))

1

T ∑ Etotal 
T
t=1 (t) 

                                               (10)  

PAR =

max(Etotal(t,m))

1

T ∑ Etotal(t,m)   M
n=1

                                           (11)                              

Model of Energy Pricing 

The real-time pricing (RTP) model, which uses set hourly rates, 

allows for efficient appliance scheduling while ensuring correct electricity 

cost computations over time slots(Yang et al., 2024). 
E𝑋𝑃 = ∑ (∑ Em

x  m ∊ M(t)m
M=1

24
t=1 × X𝑋𝑀 ∊ M(t) × P𝑅𝑇P(t)))                (12)  

Ep
y

= ∑ (∑ (En
y

∊ N(t) × P𝑅𝑇P(t))n
N=1 )24

t=1                     (13)  

Ep
total = 𝐸𝑃

𝑋 + Ep
y

= ∑ (∑ (E𝑀
𝑋 ∊ M(t) × X𝑚

𝑋 ∊ M(t) ×m
M=1

24
t=1   

∑ (En
y

∊ N(t) × Xn
y

∊ N(t) ×
  

n
N=1   PRTP(t))) +  

∑ (En
y

∊ N(t) × Xn
y

∊ N(t) × P𝑅𝑇P(t)))               (14)n
N=1   

Xm
x ∈ M (t) = {

1 if shiftable applioance is on
0 if shiftable appliance is off 

                                       (15)        

 Xn
y

∈ N (t) =  {
1 if non − shiftable appliance is on

0 if non shiftable appliance is off
                           (16)                                

Ep (t) = (Ex(t) + Ey (t) − ER( τ )) × P^𝑅𝑇𝑃  (t))             (17)          
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Scheduling Problem with appliances 

Through better appliance scheduling and less reliance on costly 

backup generators, this project aims to reduce electricity expenditures and 

the PAR. To maintain a balanced power consumption, appliances are 

controlled by HEMS using binary choices and limitations (Equations 18 

to 21).To be effective energy management this focus optimization issue is 

essential (Al Hassan et al., 2024). 

min((Ex(t) + Ey (t) − Epv (t) − ER(τ )) × PRTP (t)            (18)                

subject to; 

ETotal (t) ≤ Egrid (t) + Epv (t) + ER(τ), ∀ 1 ≤ t ≤ 24         (19)        

Etotal(t) ≥ Emin_𝑢𝑛𝑠𝑐ℎ(𝑡)                                   (20)              

τ0 ≤ τsch ≤ τmax                                           (21) 

  

The maximum permitted load withdrawal is determined by 

Egrid (t) , and effective energy management is ensured by scheduling 

parameters (τ0, τsch, and τmax). 

Proposed System Architecture 

HEMS optimizes energy utilization to reduce electricity bills and 

the PAR, while Demand Side Management and Demand Response are 

implemented in smart networks to increase stability. Using HEMS to 

dynamically schedule appliances based on market rates, smart prosumers 

effectively manage their energy by combining grid electricity, ESS, and 

RSER. 

Table 4: Classification of household appliances based on load shift ability. 

The Shiftable loads The non-shiftable loads 

The washing machine Personal computers 

The air-conditioning CCTV 

The Clothes dryer The Microwave oven 

Dishwasher Television 

 
A PV system, a DC/ AC inverter, an ESS, a SM, a SS, a MC, and 

a variety of appliances are the main elements of the suggested system 

architecture, as illustrated in Figure 4. 

Solid lines represent energy flow, dotted lines represent data flow, 

and AMI incorporates ICT for seamless communication, with smart 

meters connecting utilities to households and RSER (like solar PV) 

reducing fossil fuel dependence via inverters. The ESS serves as both a 

source and a sink, facilitating the integration of RSERs into homes and 

grids, while the smart scheduler (SS) optimizes energy consumption. The 

main controller (MC) in HEMS then supervises appliances and ESS 
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activities based on SS-generated schedules to ensure effective energy 

consumption. 

 

 
Figure 4: SH architecture overview. (Racha et.al 2023). 

Appliance Scheduling and Optimization Methods 

Evolutionary algorithms such as GA, BPSO, WDO, BFO, and 

GmPSO outperform classical approaches (DP, ILP, LP, and MILP) by 

avoiding local optima and increasing scheduling efficiency. 

Genetic Algorithm 

The Genetic Algorithm (GA), inspired by natural selection, 

evolves binary-coded appliance schedules through crossover (90% 

chance) and mutation, ensuring continual optimization. Details are shown 

in Table 5. 

Table 5: Algorithms parameters. 

Binary Particle Swarm Optimization 

Binary Particle Swarm Optimization (BPSO) determines the 

optimal solution by updating particle velocity using inertia, local best, 

global best, and a sigmoid function, resulting in efficient optimization.                                          

Algorithm Parameters & Values 

GA Reruns: 200, Population: 200, Zn: 0.1, Mn: 0.8, N: 10 

BPSO Reruns: 200, Swarm: 200, Vmax: 5, Vmin: 3, Xf: 1, XD: 0.6, Z1: 4, Z2: 3 

WDO Reruns: 200, Individuals: 200, DimMin: -6, Vmin: 7, Vmax: -0.4, SL: 0.2, N: 

3, G: 10, ᾳ: 0.3 

BFA Max Gen: 200, Se: 24, Sr: 7, SL(i): 5, Ss: 30, Sn: 2, L(i): 0.01, Ped: 0.5, Θ: 0.3 
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Wind Driven Optimization 

Wind Driven Optimization (WDO) simulates air parcel movement 

utilizing gravity, friction, pressure, and Coriolis forces to optimize 

appliance scheduling by constantly updating locations and velocities. 

Bacterial Foraging Algorithm 

The Bacterial Foraging Algorithm (BFA) simulates E. coli 

foraging, optimizing solutions by swimming, chemotaxis, and 

reproduction while shifting placements for improved appliance 

scheduling.   

Genetic-modified Particle Swarm Optimization 

To lower the PAR, power expenses, and carbon emissions, the 

suggested GmPSO technique combines GA with BPSO. PSO is used for 

preliminary optimization, and GA's crossover and mutation are then 

applied to further hone the results. This method ensures convergence by 

iterative optimization and ongoing changes to the Pareto front, 

outperforming benchmark functions such as Schaffer and Weierstrass. 

Figure 5 shows the flowchart of algorithm and pseudo code is given below 

in detail. 
Algorithm 1: Proposed GmPSO Pseudo code 

Initialize: N, MaxIter, c1, c2, w, Pm, PC, GA and PSO Parameters and RTP, ESS, RESR 

Randomly initialize particles (positions and velocities) 

Evaluate initial fitness 

Set gbest to the best initial particle, pbest for each particle 

for iter = 1 to MaxIter: 

    for each particle: Update velocity: v[i] = w * v[i] + c1 * rand() * (pbest[i] - 

position[i]) + c2 * rand() * (gbest - position[i]) 

        Update position: position[i] = position[i] + v[i] 

        Apply boundary restrictions 

        Calculate fitness[i] 

        if fitness[i] < pbest[i], update pbest[i] = position[i] 

        Update gbest with the best fitness 

        Genetic Algorithm Operators 

        Select top particles for crossover 

        Perform crossover and mutation (with probability Pm) 

        Replace weak particles with offspring if fitness improves 

        Dynamically update inertia weight: w = w * decay_factor 

Check stopping criterion (MaxIter or convergence) 

Return gbest 
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Figure 5: The proposed GmPSO algorithm flow chart. 

Price Forecasting Technique 

This work investigates the use of support vector regression (SVR) 

and auto-regressive models (AR1, AR2, and AR3) to estimate energy 

prices in smart homes, which can help with cost management and 

appliance scheduling. It optimizes energy loads using the Adaptive Neuro-

Fuzzy Inference System (ANFIS) as shown in Figure 6, which combines 

fuzzy logic and neural networks to improve decision-making in the face 

of price changes.  

 
Figure 6: Illustration of the proposed feedback ANFIS algorithm. 
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Results and Discussions  

The outcomes of the Smart Home Machine Learning Techniques 

system are shown in this section, which also analyzes the performance of 

the GmPSO algorithm using MATLAB simulations and the integration of 

ESS and RSER. The algorithm parameters are set according to Table 5. 

Table 6 shows the convergence rate and computation time comparison of 

individual algorithms and our hybrid, the suggested GmPSO outperform 

in convergence rate and computation time. This study calculates energy 

balance using grid data such as sun irradiance, temperature, and RTP. 

Figures 7(a)-7(f) depict solar radiation peaks, forecasted ambient 

temperature battery charging, RSER production, and ANFIS-based 

pricing projections and electricity costs comparison per hour, which can 

assist customers change their energy consumption and save money. 

 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

 

 
(e) 
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(f) 

Figure 7: (a) Solar irradiance, (b) Daily temperature forecast, (c) Battery 

charging, (d) Solar RSER calculated and estimated generation, (e) RTP signal 

and forecasting, (f) Electricity costs (cents) comparison. 

Table 6: Computation cost evaluation of the proposed algorithms. 

Algorithms Iterations Time complexity (s) Convergence rate 

GA 200 150 110 

BFA 200 180 130 

WDO 200 170 95 

BPSO 200 160 120 

GmPSO 200 130 85 

Condition 1: Without Solar and Battery, Appliance Scheduling  

GA, BPSO, WDO, BFO, and GmPSO can be used to optimize 

energy without employing PV or ESS. GmPSO reduces expenses by 

89.23%, PAR by 68.03%, and emissions by 84.09%. Table 7 indicates that 

GmPSO achieves the greatest reductions in cost (89.23%), PAR (68.03%), 

and carbon emissions (84.09%), making it the most effective energy 

management optimization algorithm. Figure 8(a) shows power prices per 

hour using several scheduling algorithms, demonstrating that GmPSO has 

the lowest cost, followed by WDO, PSO, and GA, with the unscheduled 

scenario being the highest. Figure 8(b) depicts the impact of RES and BSS 

integration, demonstrating how adding battery storage greatly minimizes 

cost variations and stabilizes energy expenses over 24 hours. 

Condition 2:  Integration of Solar System 

In Condition 2, combining PV systems with GmPSO reduces 

energy expenditures by 96.8%, PAR by 96.57%, and emissions by 

99.88%, as illustrated in Figures 8(c) and 8(d), making microgrid 

management more sustainable and cost-effective. Table 7n shows that 

GmPSO is the most successful algorithm, producing the greatest 

reductions in cost (96.80%), PAR (96.57%), and carbon emissions 
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(99.88%), considerably improving energy management efficiency. 

Condition 3: Integration of Solar and Battery Storage 

In Condition 3, combining PV with ESS and GmPSO reduces 

energy prices by 19.89%, PAR by 90.12%, and emissions by 20.85%, as 

illustrated in Figures 9(a)-9(e), resulting in efficient peak load 

management and reduced grid dependence. Table 7 verifies GmPSO's top 

performance, with the maximum cost (19.89%), PAR (90.12%), and 

carbon emissions (20.85%) reductions, making it the best choice for 

energy optimization. Figures 9(f)-9(h) and Tables 6-7 show how 

optimization-based scheduling with RES and BSS considerably reduces 

electricity costs, peak demand, and emissions, with GmPSO achieving the 

greatest results. These findings highlight the critical role of smart load 

control in making microgrids more cost-effective, sustainable, and 

reliable. 

Table 7: Results for condition 1 to 3 for all algorithms. 
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1 

Unsch 871.0 - - 1.5 - - 4.4 - - 

WDO 215.6 655 75.2 1.0 0.5 35 1.5 2.8 65.6 

BPSO 440.0 431 49.5 1.0 0.5 33 1.2 3.2 72.0 
GA 263.7 607 69.8 1.5 0.1 6.5 1.3 3.1 71.1 

BFA 784.7 85.2 9.8 0.9 0.6 38 1.0 3.4 77.3 

GmPSO 93.7 777 89.2 0.5 1.0 68.03 0.7 3.7 84.1 

 

 
 

2 

Unsch 250.0 - - 0.4 - - 4797 - - 

WDO 200.0 50.0 20 0.1 0.3 82.54 3755 1042 21.7 

BPSO 32.0 218 87.2 0.3 0.1 24.52 3800 997.5 20.8 
GA 50.0 200 80 0.1 0.3 73 4400 397.5 8.28 

BFA 21.0 229. 91.6 0.4 0.4 89.8 3023 1774 37.0 

GmPSO 8.0 242 96.8 0.1 0.4 96.57 5.942 4791 99.9 

 

 
 

3 

Unsch 378.3 - - 1.5 - - 7581 - - 
WDO 306.9 71.3 18.85 1.9 0.3 21.72 6110 1471 19.4 

BPSO 356.5 21.7 5.75 0.8 0.6 43.44 6155 1426 18.8 

GA 315.0 63.1 16.71 0.5 1.0 65.17 6164 1417 18.7 
BFA 313.5 64.7 17.12 0.2 1.3 86.89 6093 1487 19.6 

GmPSO 303.0 75.2 19.89 0.6 1.4 90.12 5999 1582 20.8 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 8: (a) Hourly electricity costs comparison, (b) Energy savings for 

microgrid, (c) Load management benefits in costs, and (d) Load management 

strategies for microgrid cost reductions. 
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(g) 

                                                                                                                                
(h) 

Figure 9: (a) Microgrid systems peak load control, (b) Load distribution of 

microgrid, (c) PAR for case 1(d) PAR for case 2(e) PAR comparison for case 

condition 3, (f) Microgrid costs lowering for Condition 1, (g) Expenses/costs 

lowering for microgrid case 2 and (h) Cost reduction for case 3. 

Conclusion and Future Work 

This study found that combining ML algorithms with RESR and 

ESS improves energy management in SHs. The proposed HEMS system 

uses advanced optimization techniques such as GA, BPSO, WDO, and 

GmPSO to reduce electricity expenditures, PAR, and carbon emissions 

while maintaining user comfort. The simulation findings confirm 

significant gains across three conditions: Condition 1 (without renewable 

energy) achieved 84.09% carbon emission reduction, 89.23% cost savings, 

and 68.03% PAR reduction; Condition 2 (with PV systems) achieved 

99.88% carbon emission reduction, 96.80% cost savings, and 96.57% 
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PAR reduction. Condition 3 (PV + ESS) decreased carbon emissions by 

20.85%, expenses by 19.89%, and PAR by 90.12%. These findings 

emphasize the advantages of combining renewable energy and storage, 

optimizing load distribution, and lowering grid dependency. The study 

offers useful insights for energy corporations, regulators, and developers 

of SH technology, all of which promote efficient and sustainable energy 

solutions. Future research will focus on real-time adaptive scheduling and 

demand response mechanisms to improve grid stability and user-centered 

energy management. 
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