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Abstract  

A variety of methods, collectively known as "numerical integration," are 

employed in numerical analysis to approximate the value of a definite integral. 

Among these, the Newton-Cotes formulas represent a key category of numerical 

techniques for evaluating such integrals. These methods are especially valuable 

for integrating functions that involve singularities or nonlinearities. The primary 

aim of this research is to propose more efficient techniques using centroid mean 

that offer higher accuracy, greater precision, and reduced errors. The study also 

emphasizes the theoretical analysis of errors, including theorems related to the 

order of accuracy and error terms for the developed methods. To assess the 

effectiveness of the new methods, comparisons are made with other classical 

approaches through numerical tests on various commonly used integrals, as 

reported in existing literature. The methods are implemented using MATLAB 

(R2018b) for high-level computer programming. All results were noted in Intel(R) 

Core(TM) i3-4010U with RAM 4.00GB Laptop and processing speed of 1.70GHz. 

Keywords: Quadrature Rule, Definite Integral, Newton-Cotes Formulae, 

Precision, Order of Accuracy. 

Introduction 

Numerical analysis offers a wide range of methods for 

approximating solutions to complex scientific problems using only 

arithmetic operations. It focuses on developing, analyzing, and applying 

algorithms to solve mathematical problems with a specified level of 

accuracy. As computational power improves or new methods emerge, 

some algorithms may become outdated or replaced by more effective ones. 

In both applied and pure mathematics, approximating definite integrals is 

a crucial task, particularly when their exact evaluation is either impossible 

with known analytical methods or too time-consuming for practical use. 

Various numerical techniques are available in the literature, especially for 

integrating functions that involve singularities and nonlinearities. 
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Examples include integrals ∫
𝑒−𝑥

𝑥2/3 𝑑𝑥
1

0
, ∫ 𝑠𝑖𝑛 𝑥2 𝑑𝑥

1

−∞
 and ∫

𝑠𝑖𝑛 𝑥

𝑥
𝑑𝑥

1

0
 , 

among others. 

There are numerous applications of integration in the fields of 

science and engineering, including the determination of the area under a 

curve, the area between two curves, the length of an arc, the volume of a 

solid object, the moment of inertia, and the centroid (Saand et al., 2022). 

Numerical methods are employed to determine an appropriate value for 

the defined integral. 

𝐼 = ∫ 𝑓(𝑥)
𝛽

𝛼
      (1) 

Definite integral cannot be solved analytically or when the 

function to be integrated is unknown and only a few values of the function 

𝑦 = 𝑓(𝑥) are provided. In such cases, a suitable interpolation formula is 

employed to solve the integral. This process is referred to as 

QUADRATURE when it is applied to a single-variable function. 

𝐼 = ∫ 𝑓(𝑥) 𝑑𝑥
𝛽

𝛼
≈ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑖=𝑛
𝑖=0    (2) 

Where 𝑤𝑖 is referred to as the weight function and can be obtained through 

a variety of methods. The most commonly used approach is to interpolate 

the function 𝑓(𝑥) at the 𝑛 + 1 points 𝑥𝑖 , 𝑥2, 𝑥3, … , 𝑥𝑛 using the 

interpolation formula and subsequently integrate it to obtain (2). 

Alternatively, the precision of QUADRATURE can be employed to obtain 

𝑤𝑖, thereby reducing the error. 

𝑅𝑛(𝑓) = ∫ 𝑓(𝑥) 𝑑𝑥 
𝛽

𝛼
− ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑖=𝑛
𝑖=0             (3) 

For 𝑓(𝑥) = 𝑥𝑗 , (𝑗 = 0, 1, 2, 3, … , 𝑛), the value is precisely 0. 

Consequently, the system of 𝑛 + 1 linear equations for 𝑤𝑖 will be 

generated by employing (3). The effectiveness of quadrature rules is 

typically evaluated based on their degree of precision and order of 

accuracy. The degree of precision refers to the highest degree of 

polynomial that a given rule can integrate exactly, while the order of 

accuracy indicates the rate of convergence of the global truncation error 

term. As a result, achieving higher precision and accuracy in numerical 

integration formulas presents a key challenge in numerical analysis. 

Numerous researchers consistently prioritize numerical integration. 

Atkinson (1978) was the first to employ the concept of end-point 

derivatives to enhance the accuracy of the original Newton-Cotes formulas 

by formulating a corrected trapezoidal (Atkinson, 1989). Subsequently, 

the concept of end-point derivatives was employed to enhance the 

efficiency of other Newton-Cotes formulas, including Simpson 1/3 rule 

and Simpson 3/8 rule. Consequently, the corrected Newton-Cotes 

formulas were further discussed and improved by numerous researchers, 

including (Ujevic & Roberts, 2004; Acu et al., 2008). Dehghan et al. 
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(2005a, 2005b, 2005c) conducted research on the Newton Cotes 

Quadrature rule for closed, open, and semi-open domains. Their approach 

involved locating the boundaries using two additional parameters and 

fitting the optimal boundary location by rescaling the original integral, 

thereby increasing the order of accuracy in comparison to the classical 

Quadrature rule.  

Hashemiparast et al. (2005a) implemented enhancements to the 

Gauss-Legendre, Gauss-Lobatto, and Gauss-Radan quadrature rules, 

Subsequently Similarly, Hashemiparast et al. (2006b) implemented the 

identical methodology on the first and second kinds (open type) of 

Chebyshev-Newton-Cotes quadrature rules. Burg (2012) introduced the 

concept of first and higher order derivatives at the evaluation locations 

within the closed Newton-Cotes quadrature to enhance precision and 

accuracy. In order to enhance the order of accuracy, he incorporated the 

first derivative at functional values and a few additional parameters. Later, 

Burg and Degny (2012) proposed a derivative-based midpoint quadrature 

rule. Zafar & Mir (2010) introduced several new families of open Newton-

Cotes rules that entail the evaluation of derivatives at uniformly spaced 

points of the interval and the combination of function values. And Zhao & 

Li (2013) enhanced the precision and accuracy of classical Newton-Cotes 

quadrature rules by utilizing the derivative values at the midpoint. 

 Ramachandran et al. (2016a, 2016b, 2016c, 2016d) employed the 

midpoint derivative with the Geometric mean, Harmonic mean, Heronian 

mean, Centroidal mean, cotra-harmonic, and root mean square and 

expanded the order of precision and accuracy. Khatri et al. (2019) 

implemented an alternative methodology, compared the results with the 

classical rule and utilized the mean of two distinct measures (Arithmetic 

and Geometric) and increased the order of accuracy and precision of 

Closed Newton-Cotes Quadrature. In proposed research midpoint 

derivatives and the centroidal mean are used to improve both the accuracy 

and efficiency of the quadrature formula. The midpoint derivative captures 

local behavior more effectively, while the centroidal mean provides a 

balanced evaluation point, leading to reduced error and improved 

convergence without significantly increasing computational cost. 

Newton Cotes Quadrature (CNC) 

The Newton Cotes Formulae are the most prominent numerical 

integration formulas to obtain the approximate answer for the definite 

integral. Newton Cotes formulas have several sub-classes that depend 

upon the integer value of n. Some of them are as follows: 

 Classical Trapezoidal (MPT) Rule (𝑛 = 1) 

    ∫ 𝑓(𝑥)𝑑𝑥
𝛽

𝛼
≅

(𝛽−𝛼)

2
(𝑓(𝛼) + 𝑓(𝛽)) −

(𝛽−𝛼)3

12
𝑓′′(𝜉)             (4) 
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Where 𝜉 ∈ (𝛼, 𝛽). Degree of precision is 1 and the Order of accuracy is 

3. Classical Simpson 
1

3
(MPS

1

3
) Rule (𝑛 = 2). 

∫ 𝑓(𝑥)𝑑𝑥
𝛽

𝛼
≅

(𝛽−𝛼)

6
[𝑓(𝛼) + 4𝑓 (

𝛼+𝛽

2
) + 𝑓(𝛽)] −

(𝛽−𝛼)5

2880
𝑓𝑖𝑣(𝜉)    (5) 

 Where 𝜉 ∈ (𝛼, 𝛽). Degree of precision is 3 and Order of accuracy is 5. 

Classical Simpson 
𝟑

𝟖
(MPS

𝟑

𝟖
) Rule (n = 3). 

∫ 𝑓(𝑥)𝑑𝑥
𝛽

𝛼
≅

(𝛽−𝛼)

8
[
𝑓(𝛼) + 3𝑓 (

2𝛼+𝛽

3
) +

3𝑓 (
𝛼+2𝛽

3
) + 𝑓(𝛽)

] −
(𝛽−𝛼)5

6480
𝑓𝑖𝑣(𝜉)       (6)  

Where 𝜉 ∈ (𝛼, 𝛽). Degree of precision is 3 and order of accuracy is 5.  

Midpoint Derivative Based Closed Newton Cotes Quadrature (MPCNC) 

Theorem 1:  

Efficient Modification of Midpoint Trapezoidal (EM-MPT) Rule 

is: 

∫ 𝑓(𝑥)𝑑𝑥
𝛽

𝛼
≅ 𝑇 =

(𝛽−𝛼)

2
(𝑓(𝛼) + 𝑓(𝛽)) −

(𝛽−𝛼)3

12
𝑓′′ (

𝛼+𝛽

2
) −  

(𝛽−𝛼)5

480
𝑓𝑖𝑣 (

2

3
(
𝛼2+𝛼𝛽+𝛽2

𝛼+𝛽
))                                 (7)  

with degree of precision 4. 

Proof: Since the MPT Rule has degree of precision 3, the above formula 

has at least 3 degree of precision. Now, verify that the EM-MPT Rule is 

exact for 𝑓(𝑥) = 𝑥4. Now when ∫ 𝑥4𝑑𝑥 =
1

5
(𝛽5 − 𝛼5)

𝛽

𝛼
.And put 𝑓(𝑥) =

𝑥4 in (7) we got  

𝑇 =
1

2
(𝛽 − 𝛼)(𝛼4 + 𝛽4) −

1

4
(𝛽 − 𝛼)3(𝛼 + 𝛽)2 −

1

20
(𝛽 − 𝛼)5  

𝑇 =
4

20
(𝛽 − 𝛼)(𝛽4 + 𝛽3𝛼 + 𝛽2𝛼2 + 𝛽𝛼3 + 𝛼4)  

𝑇 =
1

5
(𝛽5 − 𝛼5)  

Because the formula gives us exact result when 𝑓(𝑥) = 𝑥4. So, the 

precision of EM-MPT Rule is 4. 

Theorem 2: 

Efficient Modification of Midpoint Simpson
1

3
 (EM-MPS

1

3
) Rule is 

∫ 𝑓(𝑥)𝑑𝑥
𝛽

𝛼
≅ 𝑆1

3⁄
= 

(𝛽−𝛼)

6
[𝑓(𝛼) + 4𝑓 (

𝛼+𝛽

2
) + 𝑓(𝛽)] −  

(𝛽−𝛼)5

2880
𝑓𝑖𝑣 (

𝛼+𝛽

2
) −

(𝛽−𝛼)7

241920
𝑓𝑣𝑖 (

2

3
(
𝛼2+𝛼𝛽+𝛽2

𝛼+𝛽
))                 (8) 

 with degree of precision 6. 
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Proof: Since the MPS
𝟏

𝟑
 Rule has degree of precision 5, so the above 

Formula has at least 5 degree of precision. Now, just need to verify that 

the EM-MPS
𝟏

𝟑
 Rule is exact for  𝑓(𝑥) = 𝑥6. when 𝑓(𝑥) = 𝑥6, then 

∫ 𝑥6𝑑𝑥 =
1

7
(𝛽7 − 𝛼7)

𝛽

𝛼
.And put 𝑓(𝑥) = 𝑥6 in (8) we got 

𝑆1
3⁄

=
(𝛽−𝛼)

672
[

7{16𝛼6 + (𝛼 + 𝛽)6 + 16𝛽6}

−21(𝛽 − 𝛼)4(𝛼 + 𝛽)2 − 2(𝛽 − 𝛼)6]  

𝑆1
3⁄

=
96(𝛽−𝛼)

672
[
𝛽6 + 𝛽5𝛼 + 𝛽4𝛼2 + 𝛽3𝛼3 +

𝛽2𝛼4 + 𝛽𝛼5 + 𝛼6 ]  

𝑆1
3⁄

=
(𝛽−𝛼)

7
[
𝛽6 + 𝛽5𝛼 + 𝛽4𝛼2 + 𝛽3𝛼3 +

𝛽2𝛼4 + 𝛽𝛼5 + 𝛼6 ]  

𝑆1
3⁄

=
1

7
(𝛽7 − 𝛼7) 

Because the formula gives us exact result when 𝑓(𝑥) = 𝑥6 .So, the 

precision of EM-MPS
𝟏

𝟑
 Rule is 6. 

Theorem 3  

Efficient Modification of Midpoint Simpson 
3

8
(EM-MPS

3

8
)Rule is 

∫ 𝑓(𝑥)𝑑𝑥
𝛽

𝛼
≅ 𝑆3

8⁄
=

𝛽−𝛼

8
[
𝑓(𝛼) + 3𝑓 (

2𝛼+𝛽

3
) +

3𝑓 (
𝛼+2𝛽

3
) + 𝑓(𝛽)

] −  

(𝛽−𝛼)5

6480
𝑓𝑖𝑣 (

𝛼+𝛽

2
) −  

23(𝛽−𝛼)7

9797760
𝑓𝑣𝑖 (

2

3
(
𝛼2+𝛼𝛽+𝛽2

𝛼+𝛽
))              (9) 

with degree of Precision 6. 

Proof: Since the MPS
𝟑

𝟖
  Rule has degree of precision 5, so the above 

formula has at least 5 degree of precision. Now, it needs to verify that the 

EM-MPS 
𝟑

𝟖
 Rule is exact for  𝑓(𝑥) = 𝑥6. 

When 𝑓(𝑥) = 𝑥6, ∫ 𝑥6𝑑𝑥 =
1

7
(𝛽7 − 𝛼7)

𝛽

𝛼
 

𝑆3
8⁄
 = 

(𝛽−𝛼)

13608
[

7 {
243𝛼6 + (2𝛼 + 𝛽)6 +

(𝛼 + 2𝛽)6 + 243𝛽6 } −

189(𝛽 − 𝛼)4(𝛼 + 𝛽)2 − 23(𝛽 − 𝛼)6

]  

𝑆3
8⁄

=
(𝛽−𝛼)

13608
(

1944𝛽6 + 1944𝛽5𝛼 + 1944𝛽4𝛼2 +

1944𝛽3𝛼3 + 189𝛽2𝛼4 +

1944𝛽𝛼5 + 1944𝛼6

)   

𝑆3
8⁄

=
1944(𝛽−𝛼)

13608
(

𝛽6 + 𝛽5𝛼 + 𝛽4𝛼2 +

𝛽3𝛼3 + 𝛽2𝛼4 + 𝛽𝛼5 + 𝛼6)   
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𝑆3
8⁄

=
1

7
(𝛽7 − 𝛼7).   

 Because the formula gives us exact result when 𝑓(𝑥) = 𝑥6 .So, the 

precision of EM-MPS
𝟑

𝟖
 Rule is 6. 

The Error Terms of Efficient Modification of Derivative Based Midpoint 

Closed Newton Cotes Quadrature 

The error term can be given in mainly three different ways, here 

the concept of precision to calculate the error terms. The error of the 

integration is given by  

𝑅𝑛 =
𝐶

(𝑚+1)!
𝑓𝑚+1(𝜉)       𝛼 < 𝜉 < 𝛽                      (10) 

Here 𝑚 is the degree of precision and 

𝐶 = ∫ 𝑥𝑚+1𝑑𝑥 −
𝛽

𝛼
 ∑𝑤𝑖𝑓(𝑥𝑖)                            (11) 

Theorem 4 

EM-MPT Rule (7) has error term   𝑅1 =
(𝛽−𝛼)7

2880(𝛽+𝛼)
𝑓5(𝜉)  Where 

𝛼 < 𝜉 < 𝛽 and this scheme is seventh-order accurate. 

Proof: The degree of precision of EM-MPT Rule is 4, so by putting 𝑚 =
 4 in (10). 

 Got 𝑅1 =
𝐶1

5!
𝑓5(𝜉).Now For 𝐶1 when put 𝑓(𝑥) = 𝑥5 in (11), after 

simplification. 

𝐶1 =
𝛽6−𝛼6

6
−

(𝛽−𝛼)

24(𝛼+𝛽)
(

3𝛽6 + 14𝛽5𝛼 − 7𝛽4𝛼2 +

28𝛽3𝛼3 − 7𝛽2𝛼4 + 14𝛽5𝛼 + 3𝛼6)  

𝐶1 =
(𝛽 − 𝛼)

24(𝛼 + 𝛽)
(

𝛽6 − 6𝛽5𝛼 + 15𝛽4𝛼2 −

20𝛽3𝛼3 + 15𝛽2𝛼4 − 6𝛽𝛼5 + 𝛼6) 

𝐶1 =
(𝛽 − 𝛼)7 

24(𝛼 + 𝛽)
 

This implies that the method is seventh-order accurate, and the error term 

is 𝑅1[𝑓] =
(𝛽−𝛼)7 

24(𝛼+𝛽)×5!
𝑓5(𝜉) =

(𝛽−𝛼)7 

2880(𝛼+𝛽)
𝑓5(𝜉) 

Theorem 5 

EM-MPS
𝟏

𝟑
 Rule (8) has error term   𝑅2 =

(𝛽−𝛼)9

1451520(𝛽+𝛼)
𝑓7(𝜉) 

Where 𝛼 < 𝜉 < 𝛽 and the scheme is ninth-order accurate. 

Proof: The degree of precision of EM-MPS
𝟏

𝟑
 Rule is 6, so by putting m = 

6 in (10) got 𝑅2 =
𝐶2

7!
𝑓7(𝜉). Now for 𝐶2 put 𝑓(𝑥) = 𝑥7 in (11) after 

simplification. 
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𝐶2 =
𝛽8−𝛼8

8
−

(𝛽−𝛼)

576(𝛼+𝛽)
(70𝛽8 + 160𝛽7𝛼 + 88𝛽6𝛼2 + 256𝛽5𝛼3 +

4𝛽4𝛼4 + 256𝛽3𝛼5 + 88𝛽2𝛼6 + 160𝛽𝛼7 + 70𝛼8)   

𝐶2 =
(𝛽−𝛼)

576(𝛼+𝛽)
[72(𝛼 + 𝛽) (

𝛽7 + 𝛽6𝛼 + 𝛽5𝛼2 + 𝛽4𝛼3 +

𝛽3𝛼4 + 𝛽2𝛼5 + 𝛽𝛼6 + 𝛼7 ) −

(
70𝛽8 + 160𝛽7𝛼 + 88𝛽6𝛼2 + 256𝛽5𝛼3 +

4𝛽4𝛼4 + 256𝛽3𝛼5 + 88𝛽2𝛼6 + 160𝛽𝛼7 + 70𝛼8)]  

𝐶2 =
(𝛽−𝛼)9 

288(𝛼+𝛽)
  

This implies that the method is ninth order accurate, and the error term is 

 𝑅2[𝑓] =
(𝛽−𝛼)9 

288×7!(𝛼+𝛽)
𝑓7(𝜉) =  

(𝛽−𝛼)9 

1451520(𝛼+𝛽)
𝑓7(𝜉) 

Theorem 6 

EM-MPS
𝟑

𝟖
 Rule (9) has error term 𝑅3 =

(𝛽−𝛼)9

7!× 11664(𝛽+𝛼)
𝑓7(𝜉) 

Where 𝛼 < 𝜉 < 𝛽 and the scheme  is ninth-order accurate. 

Proof: The degree of precision of EM-MPS
𝟑

𝟖
  Rule is 6, so by putting m = 

6 in (10) We got 𝑅3 =
𝐶3

7!
𝑓7(𝜉).Now for 𝐶3 put 𝑓(𝑥) = 𝑥7 in (11) and 

after simplification 

𝐶3 =
𝛽8 − 𝛼8

8
= 

𝛽 − 𝛼

11664(𝛽 − 𝛼)
(

1435𝛽8 + 3100𝛽7𝛼 + 2272𝛽6𝛼2 +

4204𝛽5𝛼3 + 1306𝛽4𝛼4 + 4204𝛽3𝛼5 +

2272𝛽2𝛼6 + 3100𝛽𝛼7 + 1435𝛼8

) 

𝐶3 =
(𝛽 − 𝛼)

11664(𝛼 + 𝛽)

[
 
 
 
 
 1458(𝛼 + 𝛽) (

𝛽7 + 𝛽6𝛼 + 𝛽5𝛼2 + 𝛽4𝛼3 +

𝛽3𝛼4 + 𝛽2𝛼5 +  𝛽𝛼6 + 𝛼7 ) −

(

1435𝛽8 + 3100𝛽7𝛼 + 2272𝛽6𝛼2 +

4204𝛽5𝛼3 + 1306𝛽4𝛼4 + 4204𝛽3𝛼5 +

2272𝛽2𝛼6 + 3100𝛽𝛼7 + 1435𝛼8

)

]
 
 
 
 
 

 

𝐶3 =
(𝛽−𝛼)9 

11664(𝛼+𝛽)
   

This implies that the method is ninth-order accurate, and the error term is 

𝑅3[𝑓] =
(𝛽−𝛼)9 

7!× 11664(𝛼+𝛽)
𝑓7(𝜉).   

Table 1 summarizes the precision, order and the error terms for 

CNC, MPCNC and EM-MPCNC respectively. 
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Table 1: Precision, order, and the error terms for CNC, MPCNC and EM-

MPCNC respectively. 
 Classical CNC MPCNC EM-MPCNC 
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Computational Efficiency  

Numerical experiments are conducted to compare the CPU time 

of MPCNC, and EM-MPCNC. Figure 1 and Tables 2 to 4 show the 

comparison of the CPU time for the same level of accuracy of 10−17 using 

two integrals: ∫ (
1

1+𝑥
)

1

0
𝑑𝑥   and ∫ 𝑒−𝑥21

0
𝑑𝑥 and for level of accuracy of 

10−20 using integral ∫
0

1
 3𝑥𝑑𝑥.  

The required number of function and derivative evaluations is 

computed in Tables 5, 6, 7 and 8, to achieve a certain level of accuracy of 

 10−10, 10−8, 10−5, and 10−8 for the following integrals 

∫
0

1
 (

𝑑𝑥

1+𝑥
) , ∫

0

1
 3𝑥𝑑𝑥, ∫

0

2
 𝑒𝑥𝑑𝑥, and ∫

0

𝜋

2   cos 𝑥  𝑑𝑥 respectively, are tested in 

order to calculate the efficiency of (EM-MPCNC) with classical CNC and 

MPCNC. 

To achieve a level of accuracy of 10−10 the classical Trapezoidal 

rule necessitates 25002 function evaluations, while MPT necessitates 106 

Func. Eval and 105 Mid. derivatives (total = 211). EM-MPT necessitates 

21 Func. Eval and 41 Mid. derivatives (total = 61) in order to solve the 

integral ∫
0

1
 (𝑑𝑥/(1 + 𝑥)). This implies that EM-MPT requires a lower 

number of calculations than the other two methods.  
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Figure 1: Graphical representation of CPU time (seconds) from Tables 2–4 

for Problems 1–3. 

Table 2: CPU time for problem 1 for accuracy 𝟏𝟎−𝟏𝟕. 
Formula CPU Time (seconds) 

MP Trapezoidal rule 0.3593552 
MPS 1/3 rule 0.0156235 
MPS 3/8 rule 0.0312448 
EM-MPT rule 0.0624974 

EM-MPS 1/3 rule 0.002538 

EM-MPS 3/8 rule 0.0156241 

Table 3: CPU time for problem 2 for accuracy 𝟏𝟎−𝟏𝟕. 
Formula CPU Time (seconds) 

MP Trapezoidal rule 0.3837622 
MPS 1/3 rule 0.0166243 
MPS 3/8 rule 0.0332496 

EM-MPT rule 0.2656133 
EM-MPS 1/3 rule 0.0116221 
EM-MPS 3/8 rule 0.0132881 

Table 4: CPU time for problem 3 for accuracy 𝟏𝟎−𝟐𝟎. 

 

 

Formula CPU Time (seconds) 

MP Trapezoidal rule 0.9196397 
MPS 1/3 rule 0.1406182 
MPS 3/8 rule 0.1406197 
EM-MPT rule 0.7499646 

EM-MPS 1/3 rule 0.0312467 
EM-MPS 3/8 rule 0.0156219 
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Table 5: Computational cost comparison for Problem 1 using various 

quadrature rules for accuracy 𝟏𝟎−𝟏𝟎. 

Table 6: Computational cost comparison for Problem 3 using various 

quadrature rules for accuracy 𝟏𝟎−𝟖. 
Formula Order Sub intervals Func. eval Mid. deriv. Total deriv. Total 

Trapezoidal rule 2 4350 4351 0 0 4351 
Simpson 1/3 4 18 37 0 0 37 
Simpson 3/8 4 15 46 0 0 46 

MP Trapezoidal rule 4 28 29 28 56 85 

MPS 1/3 rule 6 4 9 4 8 17 
MPS 3/8 rule 6 4 13 4 8 21 

EM-MPT rule 7 8 9 8 16 25 
EM-MPS 1/3 rule 9 3 7 3 6 13 
EM-MPS 3/8 rule 9 2 7 2 4 11 

Table 7: Computational cost comparison for Problem 4 using various 

quadrature rules for accuracy 𝟏𝟎−𝟓. 
Formula Order Sub intervals Func. eval Mid. deriv. Total deriv. Total 

Trapezoidal rule 2 462 463 0 0 463 
Simpson 1/3 rule 4 8 17 0 0 17 
Simpson 3/8 rule 4 7 22 0 0 22 

MP Trapezoidal rule 4 13 14 13 13 27 
MPS 1/3 rule 6 3 7 3 3 10 
MPS 3/8 rule 6 3 10 3 3 13 
EM-MPT rule 7 3 4 4 8 12 

EM-MPS 1/3 rule 9 2 5 2 4 9 
EM-MPS 3/8 rule 9 2 7 2 4 11 

Table 8: Computational cost comparison for Problem 5 using various 

quadrature rules for accuracy 𝟏𝟎−𝟖. 
Formula Order Sub intervals Func. eval Mid.   deriv. Total deriv. Total 

Trapezoidal rule 2 4663 4664 0 0 4664 
Simpson 1/3 rule 4 22 45 0 0 45 
Simpson 3/8 rule 4 18 55 0 0 55 

MP Trapezoidal rule 4 34 35 34 34 69 
MPS 1/3 rule 6 5 11 5 5 16 
MPS 3/8 rule 6 4 13 4 4 17 

EM-MPT rule 7 9 10 9 18 28 
EM-MPS 1/3 rule 9 3 7 3 6 13 

EM-MPS 3/8 rule 9 3 10 3 6 16 

 

Formula Order Sub intervals Func. eval Mid. deriv. Total deriv. Total 

Trapezoidal rule 2 25001 25002 0 0 25002 
Simpson 1/3 rule 4 67 135 0 0 135 
Simpson 3/8 rule 4 55 166 0 0 166 

MP Trapezoidal rule 4 105 106 105 105 211 
MPS 1/3 rule 6 14 29 14 14 43 
MPS 3/8 rule 6 12 37 12 12 49 
EM-MPT rule 7 20 21 20 40 61 

EM-MPS 1/3 rule 9 7 15 7 14 29 
EM-MPS 3/8 rule 9 6 19 6 12 31 
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Numerical Experiments  

This section analyzes various numerical examples from the 

literature and compares their approximated results and errors to 

demonstrate that the EM-MPCNC displays improved precision, reduced 

error and takes less CPU time (seconds), and midpoint derivatives are 

calculated numerically. The results acquired are further illustrated by a 

series of bar graphs that illustrate the comparison between the proposed 

and the other methods. Tables 9, 10, 11, 12, 13, and 14 display the 

comparison results of the integrals ∫ 3𝑥1

0
𝑑𝑥 and ∫ 𝑒𝑥2

0
 𝑑𝑥 respectively. 

The corresponding graph is located in Figure 2.  

Problem 1. ∫
0

1
 (𝑑𝑥/(1 + 𝑥)).    (Zhao & Li, 2013)  

Problem 2. ∫
0

1
 𝑒−𝑥2

𝑑𝑥.  (Ramachandran et al., 2017) 

Problem 3. ∫
0

1
 3𝑥𝑑𝑥.  (Ramachandran et al., 2016c) 

Problem 4. ∫
0

2
 𝑒𝑥𝑑𝑥  (Zhao & Li, 2013; Burg & Degny, 2012)  

Problem 5. ∫
0

𝜋

2   cos 𝑥  𝑑𝑥  (Ramachandran et al., 2016b) 

 

 
Figure 2: Graphical Representation of the total number of function 

evaluations used for problems 1 & 3-4. 

Table 9: Comparison table of Approx: value and error term of problem 3 CST, 

MPT, and EM-MPT. 
 CST       MPT        EM-MPT 

Sub-interval Approx. value Error Approx. value Error Approx. value Error 
N=1 2 0.17952 1.82579 5.313e-03 1.81947 9.9926e-04 

N=2 1.86602 0.04554 1.82082 3.4192e-04 1.82046 1.775e-05 
N=3 1.84077 0.02029 1.82054 6.791e-05 1.82047 1.690e-06 
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Table 10: Comparison table of Approx: value and error term of problem 3 

CS1/3, MPS1/3, and EM-MPS1/3. 
  CS1/3  MPS1/3     EM-MPS1/3 

Sub-interval Approx. value Error Approx. value Error Approx. value Error 

N=1 1.82136 0.00088 1.82049 1.267e-05 1.82048 7.628e-06 
N=2 1.82053 5.704e-05 1.82047 2.045e-07 1.82047 7.015e-08 
N=3 1.82048 1.132e-05 1.82047 1.806e-08 1.82047 4.366e-09 

Table 11: Comparison table of Approx: value and error term of problem 3 

CS3/8, MPS3/8, and EM-MPS3/8. 
 CS3/8    MPS3/8       EM-MPS3/8 

Sub-interval Approx. value Error Approx. value Error Approx. value Error 
N=1 1.82087 0.00039 1.82048 7.198e-06 1.82048 3.965e-06 
N=2 1.82050 2.538e-05 1.82047 1.161e-07 1.82047 3.633e-08 
N=3 1.82048 5.035e-06 1.82047 1.026e-08 1.82047 2.247e-09 

Table 12: Comparison table of Approx: value and error term of problem 4 CST, 

MPT, and EM-MPT. 
    CT       MPT           EM-MPT 

Sub-interval Approx. value Error Approx. value Error Approx. value Error 
N=1 8.38905 2 6.57686 1.878e-01 6.32395 6.510e-2 
N=2 6.91280 0.52375 6.40194 1.288e-02 6.38801 1.041e-03 
N=3 6.62395 0.23489 6.39164 2.591e-03 6.38896 9.551e-05 

Table 13: Comparison table of Approx: value and error term of problem 4 

CS1/3, MPS1/3, and EM-MPS1/3. 
 CS1/3      MPS1/3      EM-MPS1/3 

Sub-interval Approx. value Error Approx. value Error Approx. value Error 
N=1 6.42072 3.167e-2 6.39052 1.469e-3 6.39025 1.197e-3 
N=2 6.39121 2.154e-3 6.38908 2.547e-05 6.38906 1.351e-05 
N=3 6.38948 4.325e-4 6.38905 2.282e-06 6.38905 8.983e-07 

Table 14: Comparison table of Approx: value and error term of problem 4. 

CS3/8, MPS3/8, and EM-MPS3/8. 

Conclusion 

Introduction of an Efficient Modification of the Closed Newton-

Cotes Quadrature Rules by adding one more term in midpoint derivative 

CNC formulae Zhao and li in which centroidal mean has been used at 

derivative value, this modification increased the degree of precision by 

three in comparison to the Classical CNC Rules and by one in comparison 

to the MPCNC Rules. The error terms were derived using the precision 

method, and the order of accuracy analysis demonstrated that the proposed 

modification is computationally superior and robust to both classical and 

   CS3/8    MPS3/8    EM-MPS3/8 
Sub-interval Approx. value Error Approx. value Error Approx. value Error 

N=1 6.40331 0.01425 6.38989 8.358e-04 6.38969 6.431e-04 
N=2 6.39001 0.00096 6.38907 1.447e-05 6.38906 7.132e-06 
N=3 6.38924 0.00019 6.38905 1.296e-06 6.38905 4.682e-07 
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midpoint derivative-based rules in terms of precision, error and CPU time 

(seconds). In comparison, Tables 2–14 and Figures 1–2 present numerical 

experiments that demonstrate the efficiency and effectiveness of the 

proposed scheme, showing that it outperforms others in terms of precision, 

error, and CPU time (seconds) across all test problems. Future research in 

this field could focus on creating quadrature rules that employ the same 

technique as open, semi-open, and semi-CNC quadrature rules. 
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