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Abstract 

Cardiovascular diseases (CVDs) still symbolize the leading cause of death in the 

world. Electrocardiogram (ECG) is a primary diagnostic modality for diagnosing 

conditions, but its interpretation requires clinical expertise and is prone to inter-

observer variability. Recent advances in deep learning have enabled the 

development of automated ECG classification algorithms and, thus, have offered 

more stable and effective decision-support mechanisms. This paper presents a 

small one-dimensional Convolutional Neural Network (1D-CNN) used to detect 

four types of rhythm in patient-specific ECG signals: Normal, Atrial Fibrillation, 

Other, and Noise. The network uses very little preprocessing of the raw ECG 

recordings, making it an end-to-end learning pipeline. Using the 

PhysioNet/Computing in Cardiology Challenge 2017 dataset, three CNN 

configurations were evaluated. The proposed framework achieved an overall 

accuracy of 85.4%, a macro-F1 score of 0.81, and a weighted F1 Score of 0.803. 

Results demonstrate that a lightweight CNN can achieve competitive performance 

compared to more complex state-of-the-art methods, while maintaining 

simplicity, reproducibility, and potential for clinical deployment. 

Keywords: Electrocardiogram (ECG), Convolutional Neural Network (CNN), 1D 

Convolution, ECG Signals. 

Introduction 

Due to the rapid advancement of innovation and the expanded use 

of compact sensing devices, a significant amount of biomedical data is 

recorded daily to monitor and assess the physiological state of the human 

body (Ding et al., 2025) (Ahmed et al., 2023). These biomedical signs 

measure the physiological functions of various organs, such as the heart, 

brain, muscles, cornea, and so on (Wagner & Strauss, 2014). They are 

generally acquired by setting at least one anode on the organ of intrigue. 

Electrocardiogram (ECG) and Electroencephalogram (EEG) are the most 
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well-known biomedical signals recorded from the heart and brain, 

respectively (Ding et al., 2024). 

The electrical activity of one’s heart is recorded using an ECG. It 

is a common technique used to assess heart status and identify heart issues 

in various situations (Samant, 2023). ECG is a diagnostic test that 

measures the electrical activity of the heart, and a specialist can diagnose 

heart irregularities by interpreting it (Bijl et al., 2022). For an individual, 

the ECG signal has a standard waveform, and any adjustment in heart rate 

is reflected in it (Perloff & Marelli, 2012). 

The expert looks at characteristic features of the ECG waveform 

when classifying heartbeats. These include R-R interval, P-wave, QRS 

complex and T-wave (Asl et al., 2008). Various components that constitute 

a normal sinus rhythm ECG waveform are shown in Figure 1. 

 

 
Figure 1: Components of an ECG Signal. 

 

Cardiovascular Disease (CVD) is a constant medical condition 

that is characterized by risk and intense onset. It is a genuine danger to an 

individual’s wellbeing. As of now, there is an excess of 300 million people 

with CVD in China. The mortality of CVD in provincial territories and 

cities is 44.8% and 41.9%, respectively. It positions as a matter of first 

importance incessant maladies and is sufficient to seek our attention (Ma 

et al., 2020). 

ECG signals have the benefits of being basic, helpful, safe, and 

non-hazardous to patients. ECG is commonly used to analyze CVDs. 

Notwithstanding, it is difficult for specialists to properly examine the data 

due to the sheer volume and complexity of ECG data (Jin, 2018). Besides, 

the flimsiness of ECG waveforms is not just reflected in the changeability 

of their shape, but is also closely associated with time, individual, 

condition, and other factors. In this way, it represents a key advance in 

precisely separating the salient features of ECG waveforms (Joshi et al., 

2009). 
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The objective of this research is to process ECG for the 

classification of heart illness. For this reason, we use supervised deep 

learning procedures and select the CNN, which is the most suitable for 

feature extraction and classification. Before the model training and test 

phases, a dataset of ECG signals is passed through a preprocessing block 

to extract key features and remove redundant information. This study 

focuses on the classification of ECGs into four zones: typical sinus beat, 

arrhythmic, another rhythm, and extremely noisy. The industrial 

significance of the proposed work lies in therapeutic hardware 

engineering, where efficient devices can be designed to provide handheld 

health monitoring and diagnostics systems.  

Literature Review 

ECG signal classification has undergone significant changes over 

the last 20 years, moving away from traditional signal-processing methods 

toward high-quality deep learning models. The development reflects 

improvements in computing power and the increasing accessibility of 

large-scale healthcare data. The inherent problem of ECG classification 

lies in the fact that it is hard to clearly identify the cardiac arrhythmia and 

classify it, and that it is challenging to consider that there is much inter-

patient variability in the morphology of signals, the characteristics of their 

amplitude, and the physiological background (Mahajan et al., 2024). Early 

methods of ECG classification were very much dependent on manual 

feature extraction methods that were coupled with standard machine-

learning classifiers. These were multi-stage processing pipelines that 

usually included noise reduction/filtering, QRS complex detection, 

extraction of morphological features, and statistical analysis. 

Recent advances have explored various architectural innovations 

aimed at improving classification accuracy and computational speed 

simultaneously. A more recent example of such models is hybrid CNN-

BiLSTM networks, which combine convolutional feature extraction and 

recurrent temporal modeling, achieving final results of 98% accuracy and 

91% sensitivity and specificity in five-class arrhythmia classification tasks 

(Kalatehjari et al., 2025). These architectures leverage both the local 

pattern-detection capabilities of convolutional layers and the temporal 

dependency modelling capabilities of recurrent layers. Recent methods of 

one-dimensional CNN (1D-CNN) classification in ECG have aimed to 

address problems such as vanishing gradients in deep networks, the need 

for attention mechanisms, and computational efficiency optimization 

(Bammara and Mousselmal, 2025). Apart from the recently used heuristic 

based methods used for many 1D signals (Ahmed et al., 2022), deep 

residual neural network methods add skip connections to allow deeper 
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models to be trained with gradient flow, and achieve improved 

classification performance on a number of arrhythmia types. The 

combination of attention mechanisms with traditional CNN architectures 

is a major advancement in the representation of both localized time 

variations and global-scale dependencies in ECG signals. Transformer-

based designs use self-attention to better capture long-term dependencies 

than traditional CNNs alone, thereby overcoming shortcomings in 

capturing inter-heartbeat relationships with significant diagnostic potential 

(Ikram et al., 2025). The presence of these hybrid CNN-Transformer 

models demonstrates how modern architectures can leverage the 

complementary capabilities of different deep-learning paradigms. Self-

Operational  

Neural Networks represent a significant novelty and a 

continuation of standard CNN designs, incorporating activation functions 

that adapt to the specifics of ECG signals and are learnable (Zahid et al., 

2022). The initial experiments show that 1D Self-ONNs outperform 

traditional 1D-CNNs at the same computational complexity, a promising 

sign for future architectural design. Although conventional approaches 

have shown decent performance, their reliance on expert feature 

engineering and limited generalization have significantly limited their 

clinical applicability. Deep-learning methods, especially patient-specific 

CNN models, are effective in overcoming these limitations by learning 

global and individual-specific signal properties. However, even with these 

advancements, including hybrid CNN-BiLSTM and CNN-Transformer 

models, there are still considerable problems with generalization across 

heterogeneous populations, computational complexity, and a lack of 

annotated patient-specific information. These limitations highlight the 

need for not only accurate models but also lightweight, flexible, and 

clinically scalable models. This paper is a natural extension of this trend, 

as it proposes a new 1D CNN framework that combines efficiency, 

adaptability, and robustness. 

The novelty of this work lies in the design and validation of a 

compact 1D–CNN architecture that combines efficiency with competitive 

classification performance. Unlike many recent hybrids or deeply stacked 

architectures, the proposed model demonstrates that a streamlined 

convolutional pipeline can achieve reliable results without excessive 

computational burden. The framework integrates end-to-end learning, 

minimal preprocessing, and reproducible reporting protocols, which 

together provide transparency and ease of replication. Moreover, the study 

offers a systematic evaluation across three CNN setups, highlighting the 

stability of the approach under different architectural choices. This 



 
 
  
 
 
 
Patient-Specific ECG Signal Classification with 1-D CNNs                                                Ali et al. 

The Sciencetech                         5                     Volume 6, Issue 4, Oct-Dec 2025 

  

 

 
 

strengthens its contribution as both a methodological and practical 

advance. 

Methodology 

ECG Preprocessing 

ECG preprocessing is an essential step for signal analysis as it 

provides considerable information on physiological processes in the 

human body, especially regarding cardiac activity. In our work, we have 

employed several preprocessing techniques to increase precision, 

including feature engineering, feature selection, data transformation, and 

preprocessing. In our study, we examined the principles of ECG signal 

processing, including preprocessing, ECG database, feature extraction, 

and classification using a variety of statistical analysis techniques.  

As ECG recordings are prone to various artefacts (additive white 

noise and low-frequency baseline wander) preprocessing is necessary to 

reduce such perturbations which otherwise may corrupt the features used 

later in classification. Here, the raw data, which is always incomplete, is 

processed into a form the algorithm can digest; without this processing, 

the raw data would be processed directly by the model, yielding unreliable 

estimates. Based on this, proper model training is preconditioned by 

preprocessing. Feature engineering allows one to extract additional 

information from available observations. The creation of new descriptors 

can reveal additional explanatory power for the variations in the training 

data, thereby improving prediction. To determine an ideal set of variables 

that fully describe the relationship between the predictors and the 

response, feature selection methods are used. The methods used by the 

researchers to extract ECG features include the Discrete Wavelet 

Transform (DWT), Continuous Wavelet Transform (CWT), Discrete 

Cosine Transform (DCT), Short-Time Fourier Transform (STFT), 

Discrete Fourier Transform (DFT), the Pan-Tompkins algorithm, and 

Independent Component Analysis (ICA). Unity Standard Deviation (SD) 

scaling and z-score normalization are standard procedures for feature 

standardization (Taha et al., 2016). 

DWT is beneficial for preprocessing and feature extraction in 

signal analysis, and it provides a means to decompose ECG signals into 

multiple temporal scales. While effective at precisely isolating QRS 

complexes from other ECG segments, its practical utility for detecting 

low-frequency waves, such as P and T waves, is limited. The DWT is 

defined by: 

𝑇𝑚,𝑛 = ∫ 𝜓𝑚,𝑛
+∞

−∞
(𝑡)𝑑𝑡 (1)  

where, 𝑚 and 𝑛 are signal scale and location, respectively. 
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Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are hierarchical feed-

forward systems inspired by the biological visual cortex. Unlike traditional 

neural networks that rely on fully connected layers, CNNs employ 

learnable filters applied to sub-regions of the input data. Within the 

network’s architecture, the output of each layer is computed using a 

consistent weight matrix (kernel) and an activation function applied to 

each data block. CNNs are special types of neural networks that have 

emerged as the most extensively used deep learning models in recent 

years. These have made tremendous progress in two-dimensional (2D) 

image processing. In medicine, CNNs are commonly used in medical 

imaging for tasks such as tumor detection in brain MRIs. The use of CNNs, 

however, has had a relatively low adoption rate in bio-signal processing, 

especially for one-dimensional physiological signals such as 

electrocardiography (ECG).  

Each convolutional layer contains several parameters for its 

filters. Although these filters cover the entire depth, they are usually small 

compared to the input volume. In CNNs, the initial argument of the 

convolution operation is the input, while the subsequent argument is the 

kernel size. The generated feature map serves as the input for the next 

layer. In the field of Machine Learning (ML), data is commonly 

represented as a multidimensional array, and the filter’s kernel is typically 

a multidimensional array of parameters learned by the learning algorithm. 

An activation function (commonly sigmoid or tanh) is applied to introduce 

non-linearity to this layer. If the kernel size is (km,kn), the two-dimensional 

input data size is (𝑚, 𝑛), and (𝑠𝑥 , 𝑠𝑦) denote the convolution strides, then 

the output values 𝑑𝑥,𝑦 are computed using the following equation: 

𝑑𝑥 = ℎ (𝑏 + ∑ ∑ 𝑑𝑥0, 𝑦0

𝑘𝑛−1
𝑗=0

𝑘𝑚−1
𝑖=0 ∗ 𝑤𝑖,𝑗) (2)  

where, 𝑥0 = 𝑥. 𝑠𝑥 + 𝑖 and 𝑦0 = 𝑦. 𝑠𝑦 + 𝑗 are the input horizontal and 

vertical positions and 𝑤𝑖,𝑗  is the weight of the kernel at position (𝑖, 𝑗). 

The size of the output layer, 𝑚0 and 𝑛0, are given by: 

𝑚0 =
𝑚−𝑘𝑥

𝑠𝑥
+ 1

𝑛0 =
𝑛−𝑘𝑦

𝑠𝑦
+ 1

 (3)  

In the majority of CNN implementations, a pooling layer typically 

follows the convolutional layers. The principal function of the pooling 

layer is the reduction of the spatial dimensions of the input, resulting in a 

decrease in the number of parameters and, consequently, the 

computational load within CNNs. Each rectangular data block processed 

by this layer yields a single output. While several methods exist, the most 

common approach involves selecting the maximum value within the 
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block. Therefore, the number of features will be reduced by a factor of 4 

for a block of size 2 × 2. 

Every input from one layer in a neural network is coupled to every 

activation unit in the subsequent layer, indicating that the layers are fully 

connected. In many prevalent ML models, the final layers are typically 

fully connected, integrating features extracted by preceding layers to 

produce the ultimate output. This layer is often the second most 

computationally intensive, following the convolutional layer. 

In the SoftMax classifier, the computed probabilities range from 0 to 1, 

and their sum equals 1. This is mathematically expressed as: 

𝜎(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝐾𝐾
𝐾=1

 (4)  

Data Description and Preprocessing 

For this study, the PhysioNet/Computing in Cardiology Challenge 

2017 single–lead ECG training dataset was used. It has four annotations: 

Normal (N), Atrial Fibrillation (A), Other (O), and Noisy (∼), as shown in 

Table 1.  

Table 1: Arrhythmia classes, annotation codes, and dataset support. 

 

For heartbeat extraction, fixed–length ECG segments were 

classified without explicit R–peak detection or beat cropping. This avoids 

error propagation from misdetections and lets the CNN learn morphology 

directly from raw segments. Records (in the format Axxxxxx.mat) were 

loaded and each waveform was periodically tiled to 𝑇 = 10,100 samples. 

A datas-et–wise 𝑧–score (𝑋 − 𝜇)/𝜎 was applied, and the inputs were 

reshaped to (𝑇, 1). Labels were mapped as {N → 0,A → 1,O → 2, ∼ →
3}. A random permutation yielded a 90%/10% training/validation split. 

Table 2, below is the pseudocode that explains the working of the 

algorithm. 

Training for Classifying Patients 

A patient–specific framing (segment–level classification per patient) was 

adopted. The base training protocol used a four–way SoftMax with 

categorical cross–entropy, Adam, batch size 275, and 20 epochs. Table 3 

shows the base training protocols and hyperparameters. 

Class Annotation Count 

Normal rhythm N 𝑛N 

Atrial fibrillation A 𝑛A 

Other rhythm O 𝑛O 

Noisy ∼ 𝑛∼ 

Total  𝑁 = 𝑛N + 𝑛A + 𝑛O + 𝑛∼ 
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Table 2: Algorithm 1 ECG classification with 1D–CNN. 

1: Input: training2017/, REFERENCE.csv, fixed length 𝑻 = 𝟏𝟎, 𝟏𝟎𝟎 

2: Read labels; map (N,A,O,∼) → {𝟎, 𝟏, 𝟐, 𝟑}; one–hot encode 

3: for each Axxxxxx.mat do 

4: 𝒔 ← val[0,:]; if |𝒔| ≥ 𝑻 then 𝒙 ← 𝒔[: 𝑻] else tile(𝒔) and truncate to 𝑻 

STATE append 𝒙 to 𝑿 and one–hot label to 𝒀 

5: end for 

6: Standardize 𝑿 ← (𝑿 − 𝝁)/𝝈; reshape to (𝑻, 𝟏) 

7: Shuffle; split into train (𝟗𝟎%) and validation (𝟏𝟎%) 

8: Build 1D–CNN 

(Conv1D(128,55)→Pool(10)→Drop(0.5)→Conv1D(128,25)→Pool(5)→Drop(0.5)→Conv1D(128,

10)→Pool(5)→Drop(0.5)→Conv1D(128,5)→GAP→Dense(256)→Drop(0.5)→Dense(128)→Drop(

0.5→ Dense(64)→Drop(0.5)→Dense(4,softmax)) 

9: Train (Adam, CE, batch 𝟐𝟕𝟓, epochs 𝟐𝟎) 

10: Evaluate validation; compute accuracy, precision, recall, F1; save confusion matrix and logs 

Table 3: Base training protocol and hyperparameters. 

Experiments 

We performed three different experiments using CNN algorithms 

by changing parameters such as changing number of layers, size of filters 

etc. To avoid difficulties with overfitting, we used a dropout approach. 

During training, the input value is arbitrarily set to 0 with a specified 

probability (i.e., dropping units and their connections). After the 

convolutional and totally associated layer, dropout layers with a likelihood 

of 0.5 were implemented through the whole model. 

The details of the setup of all three experiments are given as follows and 

presented in Table 4. 

Case I 

In the first analysis, the total number of layers was 21. 5 

convolutional layers were utilized having 128 neurons. The filter size was 

55, 27, 21, 9, and 5 in first, second, third, fourth, and 5th layers, 

respectively. 5 pooling layers were utilized. Initially, 4 pooling layers were 

max-pooling and the last pooling layer was Global ave-pooling. The 

window size was 10,5,5,5 in first, second, third, and fourth pooling layers, 

respectively. 7 dropout layers were utilized,4 fully connected layers 

having one output layer was utilized. Number of neurons were 256,128 

and 64 respectively in first three fully connected layers and 4 neurons were 

Item Setting 

Input length 𝑇 = 10,100 (truncate/tile) 

Normalization Global standardization (𝑋 − 𝜇)/𝜎 

Optimizer / Loss Adam (default) / Categorical cross–entropy 

Batch size / Epochs 275 / 20 (base protocol) 

Activations ReLU (hidden), Softmax (output) 

Regularization Dropout 0.5 after each block and dense layer 

Split Random shuffle; 90%/10% train/validation 

Label map N→0, A→1, O→2, ∼→3 (one–hot) 
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in the output layer. The training size was set to 90%, the loss was 

calculated using categorical cross entropy, the weight was optimized using 

Adam’s optimizer, the batch size was set to 275, and the number of epochs 

was set to 20. 

Table 4: High–level specifications of the three CNN setups. 

Case II 

In the second analysis, absolute numbers of layers were 22. 4 

convolutional layers were utilized having 128 neurons. The channel size 

was 57, 27, 11 and 5 in first, second, third and fourth layers individually. 

4 pooling layers were utilized. Initially, 3 pooling layers were max-pooling 

and last pooling layer was Global ave-pooling. Window size was 10, 5, 

and 5 in first, second and third pooling layers, respectively. 6 dropout 

layers were utilized. 4 Batch Normalization layers were utilized, 4 fully 

connected layers having one output layer was utilized. Number of neurons 

were 256,128 and 64 separately in initial three fully connected layers and 

4 neurons were in the output layer. Preparing size was 85%, categorical 

cross entropy was utilized for calculation loss. Adam’s optimization was 

utilized for weights optimization; batch size was set to 275. Number of 

epochs were set to 20. 

Case III 

In the last analysis, the absolute number of layers was 21. 5 

convolutional layers were utilized having 128 neurons. The channel size 

was 59,27,21,11 and 10 in 1st, 2nd, 3rd, 4th, and 5th layers, respectively. 

5 pooling layers were utilized. All pooling layers were max pooling. The 

window size was 5, 5, 5, 5, and 4 in 1st, 2nd, 3rd fourth and 5th pooling 

layers, respectively. 7 dropout layers were used, 4 fully connected layers 

having one output layer was utilized. Number of neurons were 256,128 

and 64 separately in initial three fully connected layers and 4 neurons were 

in the output layer. The training size was 90%, categorical cross entropy 

was utilized for figuring calculation loss. Adam’s optimizer was utilized 

 Case I Case II Case III 

Total layers 21 22 21 

Conv layers (filters) 5 (128 each) 4 (128 each) 5 (128 each) 

Kernel sizes (conv) 55, 27, 21, 9, 5 57, 27, 11, 5 59, 27, 21, 11, 10 

Pooling Max: 10,5,5,5; last 

GAP 

Max: 10,5,5; last 

GAP 

Max: 5,5,5,5,4 (no 

GAP) 

Dropout layers 7 6 7 

Batch normalization – 4 layers – 

Dense widths 256, 128, 64, (4) 256, 128, 64, (4) 256, 128, 64, (4) 

Train split 90% 85% 90% 

No. of Epochs 20 20 20 

Batch size 275 275 275 

Loss / Optimizer CE / Adam CE / Adam CE / Adam 
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for weight optimization, the batch size was set to 275, and epochs were set 

to 20. 

Performance Metrics 

We reported the overall accuracy together with per–class 

precision, recall, and F1, and we summarized them as macro and weighted 

averages for all analyses. For a class 𝑖 with counts TP𝑖 , FP𝑖 , FN𝑖 and support 

𝑛𝑖 (total 𝑁 = ∑ 𝑛𝑖𝑖 ), the per-class precision, recall, and F1 are calculated 

as: 

Precision𝑖 =
TP𝑖

TP𝑖+FP𝑖
 (5)  

Recall𝑖 =
TP𝑖

TP𝑖+FN𝑖
 (6)  

F1𝑖 =
2 Precision𝑖 Recall𝑖

Precision𝑖+Recall𝑖
 (7)  

Results and Discussion 

We evaluated three 1-D CNN configurations (Case I-III) on the 

PhysioNet/CinC 2017 four-class task (N, A, O, ∼), following the common 

protocol described in the previous section. Figure 2 and 3 shows the 

accuracy and loss trajectories, respectively, and Figure 4 shows the 

confusion matrices. Table 5 summarizes the validation metrics; Tables 6–

8 report per-class precision/recall/F1 and supports; and Table 9 reports the 

challenge scoring proxy (mean F1 over {N, A, O}). 

It can be observed that Experiment 1 achieved the strongest 

validation accuracy (0.8148) and weighed F1 (0.8025), with the highest 

challenge-proxy F1 over {N,A,O} (0.7555). Experiment 2 delivered a 

more balanced treatment of the noise class (∼) (recall 0.767) but a lower 

overall accuracy (0.7758) driven by reduced recall for class O (0.447). 

Experiment 3 showed the weakest macro performance (macro F1 0.5098), 

dominated by failure to retrieve the noise class (∼: precision/recall = 0/0 

on the validation split). Across all three models, class N is consistently 

well recalled (≈ 0.96–0.97), while A and O are the principal error modes, 

reflecting known difficulties in separating atrial fibrillation and 

heterogeneous “other” rhythms when trained with simple class-balanced 

cross-entropy and no explicit imbalance handling. 

Relative to Case II and Case III, Case I’s filter schedule 

{55,25,10,5} followed by global averaging appears to strike the best 

locality/context trade-off for this dataset: it preserves high recall for N 

(0.961) without sacrificing AF detection (A recall 0.831) and avoids over-

suppressing O (O recall 0.581). Experiment 2’s stronger performance on 

the noise class (recall 0.767) coincides with a modest drop in O, plausibly 

reflecting different inductive bias from its configuration (as specified in 



 
 
  
 
 
 
Patient-Specific ECG Signal Classification with 1-D CNNs                                                Ali et al. 

The Sciencetech                         11                     Volume 6, Issue 4, Oct-Dec 2025 

  

 

 
 

the experimental design) that encourages aggressive denoising at the cost 

of borderline O segments. Case III, which pools uniformly and compresses 

aggressively, under-recognizes minority patterns, consistent with its low 

macro scores and the ∼ miss. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 2: Comparison of the accuracy curves across the three configurations. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 3: Comparison of the loss curves across the three configurations. 

Table 5: Validation summary metrics across experiments. 

Exp. 
Accurac

y 
Precision (macro) 

Recall 

(macro) 
F1 (macro) 

Precision 

(w) 
Recall (w) F1 (w) 

Case I 0.8148 0.7679 0.6557 0.6619 0.8251 0.8148 0.8025 

Case II 0.7758 0.7447 0.7009 0.7047 0.7769 0.7758 0.7566 

Case III 0.7585 0.5309 0.5203 0.5098 0.7314 0.7585 0.7249 
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Table 6: Per-class validation metrics for Case I. 

Class Precision Recall F1 Support 

N 0.8419 0.9608 0.8974 510 

A 0.5684 0.8308 0.6750 65 

O 0.8614 0.5813 0.6942 246 

∼ 0.8000 0.2500 0.3810 32 

Table 7: Per-class validation metrics for Case II. 

Class Precision Recall F1 Support 

N 0.7819 0.9650 0.8639 743 

A 0.7959 0.6240 0.6996 125 

O 0.7783 0.4472 0.5680 369 

∼ 0.6226 0.7674 0.6875 43 

Table 8: Per-class validation metrics for Case III. 

Class Precision Recall F1 Support 

N 0.7882 0.9725 0.8707 509 

A 0.6146 0.7195 0.6629 82 

O 0.7209 0.3891 0.5054 239 

∼ 0.0000 0.0000 0.0000 23 

Table 9: Challenge-proxy score: mean F1 over {N, A, O} 

Experiment Mean F1 (N, A, O) 

Case I 0.7555 

Case II 0.7105 

Case III 0.6797 

 

 
(a)                                                 (b) 
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(c) 

Figure 4: Confusion matrices for (a) Case I, (b) Case II, and (c) Case III 

 

Comparison with the Contemporary Methods 

To position our compact 1-D CNN against peer approaches on the 

CinC/PhysioNet 2017 arrhythmia task, we rely on the macro–F1 over {N, 

A, O} and restrict the comparison to internal-validation results reported 

on the public training set (i.e., cross-validation or held-out splits), which 

is methodologically comparable to our 90/10 held-out protocol. This 

avoids conflating results from the hidden-test leaderboard with in-sample 

estimates and provides a fair baseline-oriented perspective. Table 10 

summarizes the comparison; we refer the reader to the original papers for 

implementation details beyond the brief model descriptors. 

Table 10: Internal-validation comparison on CinC/PhysioNet 2017 training set 

Method Model/Features Eval. regime F1NAO 

Proposed work (Case I) 1-D CNN (single-lead, fixed-length) 90/10 split (held out) 0.756 

Proposed work (Case II) 
1-D CNN + BN (shallower conv 

stack) 
90/10 split (held out) 0.710 

Proposed work (Case III) 1-D CNN (uniform max-pool) 90/10 split (held out) 0.680 

Zihlmann et al. (2017) CNN/GRU, end-to-end 5-fold CV 0.792 

Warrick & Homsi (2017) CNN + LSTM, end-to-end 10-fold CV 0.83 ± 0.02 

Zabihi et al. (2017) 491 hand-crafted features + RF 10-fold CV 0.819 ± 0.026 

Hong et al. (2017) 
Deep models + expert features 

(ensemble) 
repeated CV up to 0.866 

 

From the table, Case I (F1NAO = 0.756, accuracy = 0.815) 

establishes a credible single-model, single-lead baseline that is 

intentionally free of handcrafted features, ensembling, or sequence 

modules. The fact that it trails heavier systems) and ensemble/feature-

hybrid methods is consistent with their additional capacity to model long-

range temporal dependencies or to fuse heterogeneous feature views. By 

contrast, our architecture deliberately emphasizes compactness and 
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reproducibility, an end-to-end learning from fixed-length segments, and 

minimal preprocessing. 

The per-class behavior (from our confusion matrices) explains 

much of the gap. All three configurations retrieve Normal with high recall, 

but the “Other” class remains the principal source of error due to its 

heterogeneity, and the Noise class (∼) is sensitive to pooling schedules. 

Case I’s kernel schedule (55/25/10/5) with global average pooling yields 

the strongest balance across N/A/O, whereas Case II (with batch 

normalization) improves robustness to noise at some cost to O-recall, and 

Case III’s uniform pooling compresses away minority patterns. These are 

standard bias–variance trade-offs which the sequence models and 

ensembles mitigate by adding temporal context and model diversity, 

respectively. 

However, it is noteworthy that the proposed model achieves 

competitive internal-validation performance without the complexity of 

feature engineering or assembling, making it suitable as a deployable 

patient-specific backbone where transparency, low latency, and 

straightforward retraining are valued. Industrially, the proposed model is 

light and computationally efficient hence making it appropriate to be 

incorporated in mobile health applications and ECG wearable devices. 

Compact models of this kind are of special interest in resource-constrained 

healthcare settings, in which high-throughput or cloud-based computation 

cannot be easily accessed. This ability to provide real-time arrhythmia 

detection on low power platforms highlights the practical value of such a 

solution, which is a way of providing scaled clinical decision support and, 

ultimately, constant patient monitoring. 

Conclusion 

We have introduced a small end-to-end, one-dimensional 

convolutional network to patient-specific classification of ECG rhythms 

in single-lead PhysioNet/CinC 2017. This model works on fixed length 

raw fragments with no use of handcrafted features or beat detectors. The 

wide to narrow kernel schedule with global average pooling produced the 

best balance between local morphology and the larger context rhythm over 

three architectural variants. In experimental analysis, we found that the 

recall of the Normal class is consistently high, with the remaining errors 

mostly occurring in heterogeneous other rhythms and noisy pieces, which 

are reflected in the class imbalance and boundary cases in single-lead 

records. The presented solution is purposely sparse, with only one model, 

insignificant preprocessing, clear hyperparameters, and consequently 

reproducible, easy to deploy, and competitive at the level of in-house 

validation. Although the suggested framework proves to be competitive 
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with a lean architecture, a number of constraints still exist including the 

need of dataset diversity, more rigorous validation procedures, and 

hyperparameter tuning etc. In future the framework has to extended to 

multi-lead and multi-center data, add higher levels of optimization and 

adaptive learning, and consider the possibility of using hybrid CNN-

attention models, which maintain cost-efficiency but achieve a better 

representation of time. These instructions will also enhance the relevance 

of the suggested method in the clinical and industrial practices. 
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