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Abstract

Cardiovascular diseases (CVDs) still symbolize the leading cause of death in the
world. Electrocardiogram (ECG) is a primary diagnostic modality for diagnosing
conditions, but its interpretation requires clinical expertise and is prone to inter-
observer variability. Recent advances in deep learning have enabled the
development of automated ECG classification algorithms and, thus, have offered
more stable and effective decision-support mechanisms. This paper presents a
small one-dimensional Convolutional Neural Network (I1D-CNN) used to detect
Jfour types of rhythm in patient-specific ECG signals: Normal, Atrial Fibrillation,
Other, and Noise. The network uses very little preprocessing of the raw ECG
recordings, making it an end-to-end learning pipeline. Using the
PhysioNet/Computing in Cardiology Challenge 2017 dataset, three CNN
configurations were evaluated. The proposed framework achieved an overall
accuracy of 85.4%, a macro-F1 score of 0.81, and a weighted F1 Score of 0.803.
Results demonstrate that a lightweight CNN can achieve competitive performance
compared to more complex state-of-the-art methods, while maintaining
simplicity, reproducibility, and potential for clinical deployment.

Keywords: Electrocardiogram (ECG), Convolutional Neural Network (CNN), 1D
Convolution, ECG Signals.

Introduction

Due to the rapid advancement of innovation and the expanded use
of compact sensing devices, a significant amount of biomedical data is
recorded daily to monitor and assess the physiological state of the human
body (Ding et al., 2025) (Ahmed et al., 2023). These biomedical signs
measure the physiological functions of various organs, such as the heart,
brain, muscles, cornea, and so on (Wagner & Strauss, 2014). They are
generally acquired by setting at least one anode on the organ of intrigue.
Electrocardiogram (ECG) and Electroencephalogram (EEG) are the most
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well-known biomedical signals recorded from the heart and brain,
respectively (Ding et al., 2024).

The electrical activity of one’s heart is recorded using an ECG. It
is a common technique used to assess heart status and identify heart issues
in various situations (Samant, 2023). ECG is a diagnostic test that
measures the electrical activity of the heart, and a specialist can diagnose
heart irregularities by interpreting it (Bijl et al., 2022). For an individual,
the ECG signal has a standard waveform, and any adjustment in heart rate
is reflected in it (Perloff & Marelli, 2012).

The expert looks at characteristic features of the ECG waveform
when classifying heartbeats. These include R-R interval, P-wave, QRS
complex and T-wave (Asl et al., 2008). Various components that constitute
a normal sinus thythm ECG waveform are shown in Figure 1.
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Figure 1: Components of an ECG Signal.

Cardiovascular Disease (CVD) is a constant medical condition
that is characterized by risk and intense onset. It is a genuine danger to an
individual’s wellbeing. As of now, there is an excess of 300 million people
with CVD in China. The mortality of CVD in provincial territories and
cities is 44.8% and 41.9%, respectively. It positions as a matter of first
importance incessant maladies and is sufficient to seek our attention (Ma
et al., 2020).

ECG signals have the benefits of being basic, helpful, safe, and
non-hazardous to patients. ECG is commonly used to analyze CVDs.
Notwithstanding, it is difficult for specialists to properly examine the data
due to the sheer volume and complexity of ECG data (Jin, 2018). Besides,
the flimsiness of ECG waveforms is not just reflected in the changeability
of their shape, but is also closely associated with time, individual,
condition, and other factors. In this way, it represents a key advance in
precisely separating the salient features of ECG waveforms (Joshi et al.,
2009).
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The objective of this research is to process ECG for the
classification of heart illness. For this reason, we use supervised deep
learning procedures and select the CNN, which is the most suitable for
feature extraction and classification. Before the model training and test
phases, a dataset of ECG signals is passed through a preprocessing block
to extract key features and remove redundant information. This study
focuses on the classification of ECGs into four zones: typical sinus beat,
arrhythmic, another rhythm, and extremely noisy. The industrial
significance of the proposed work lies in therapeutic hardware
engineering, where efficient devices can be designed to provide handheld
health monitoring and diagnostics systems.

Literature Review

ECG signal classification has undergone significant changes over
the last 20 years, moving away from traditional signal-processing methods
toward high-quality deep learning models. The development reflects
improvements in computing power and the increasing accessibility of
large-scale healthcare data. The inherent problem of ECG classification
lies in the fact that it is hard to clearly identify the cardiac arrhythmia and
classify it, and that it is challenging to consider that there is much inter-
patient variability in the morphology of signals, the characteristics of their
amplitude, and the physiological background (Mahajan et al., 2024). Early
methods of ECG classification were very much dependent on manual
feature extraction methods that were coupled with standard machine-
learning classifiers. These were multi-stage processing pipelines that
usually included noise reduction/filtering, QRS complex detection,
extraction of morphological features, and statistical analysis.

Recent advances have explored various architectural innovations
aimed at improving classification accuracy and computational speed
simultaneously. A more recent example of such models is hybrid CNN-
BiLSTM networks, which combine convolutional feature extraction and
recurrent temporal modeling, achieving final results of 98% accuracy and
91% sensitivity and specificity in five-class arrhythmia classification tasks
(Kalatehjari et al., 2025). These architectures leverage both the local
pattern-detection capabilities of convolutional layers and the temporal
dependency modelling capabilities of recurrent layers. Recent methods of
one-dimensional CNN (1D-CNN) classification in ECG have aimed to
address problems such as vanishing gradients in deep networks, the need
for attention mechanisms, and computational efficiency optimization
(Bammara and Mousselmal, 2025). Apart from the recently used heuristic
based methods used for many 1D signals (Ahmed et al., 2022), deep
residual neural network methods add skip connections to allow deeper
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models to be trained with gradient flow, and achieve improved
classification performance on a number of arrhythmia types. The
combination of attention mechanisms with traditional CNN architectures
is a major advancement in the representation of both localized time
variations and global-scale dependencies in ECG signals. Transformer-
based designs use self-attention to better capture long-term dependencies
than traditional CNNs alone, thereby overcoming shortcomings in
capturing inter-heartbeat relationships with significant diagnostic potential
(Ikram et al., 2025). The presence of these hybrid CNN-Transformer
models demonstrates how modern architectures can leverage the
complementary capabilities of different deep-learning paradigms. Self-
Operational

Neural Networks represent a significant novelty and a
continuation of standard CNN designs, incorporating activation functions
that adapt to the specifics of ECG signals and are learnable (Zahid et al.,
2022). The initial experiments show that 1D Self-ONNs outperform
traditional 1D-CNNs at the same computational complexity, a promising
sign for future architectural design. Although conventional approaches
have shown decent performance, their reliance on expert feature
engineering and limited generalization have significantly limited their
clinical applicability. Deep-learning methods, especially patient-specific
CNN models, are effective in overcoming these limitations by learning
global and individual-specific signal properties. However, even with these
advancements, including hybrid CNN-BiLSTM and CNN-Transformer
models, there are still considerable problems with generalization across
heterogeneous populations, computational complexity, and a lack of
annotated patient-specific information. These limitations highlight the
need for not only accurate models but also lightweight, flexible, and
clinically scalable models. This paper is a natural extension of this trend,
as it proposes a new 1D CNN framework that combines efficiency,
adaptability, and robustness.

The novelty of this work lies in the design and validation of a
compact 1D—CNN architecture that combines efficiency with competitive
classification performance. Unlike many recent hybrids or deeply stacked
architectures, the proposed model demonstrates that a streamlined
convolutional pipeline can achieve reliable results without excessive
computational burden. The framework integrates end-to-end learning,
minimal preprocessing, and reproducible reporting protocols, which
together provide transparency and ease of replication. Moreover, the study
offers a systematic evaluation across three CNN setups, highlighting the
stability of the approach under different architectural choices. This
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strengthens its contribution as both a methodological and practical
advance.

Methodology

ECG Preprocessing

ECG preprocessing is an essential step for signal analysis as it
provides considerable information on physiological processes in the
human body, especially regarding cardiac activity. In our work, we have
employed several preprocessing techniques to increase precision,
including feature engineering, feature selection, data transformation, and
preprocessing. In our study, we examined the principles of ECG signal
processing, including preprocessing, ECG database, feature extraction,
and classification using a variety of statistical analysis techniques.

As ECG recordings are prone to various artefacts (additive white
noise and low-frequency baseline wander) preprocessing is necessary to
reduce such perturbations which otherwise may corrupt the features used
later in classification. Here, the raw data, which is always incomplete, is
processed into a form the algorithm can digest; without this processing,
the raw data would be processed directly by the model, yielding unreliable
estimates. Based on this, proper model training is preconditioned by
preprocessing. Feature engineering allows one to extract additional
information from available observations. The creation of new descriptors
can reveal additional explanatory power for the variations in the training
data, thereby improving prediction. To determine an ideal set of variables
that fully describe the relationship between the predictors and the
response, feature selection methods are used. The methods used by the
researchers to extract ECG features include the Discrete Wavelet
Transform (DWT), Continuous Wavelet Transform (CWT), Discrete
Cosine Transform (DCT), Short-Time Fourier Transform (STFT),
Discrete Fourier Transform (DFT), the Pan-Tompkins algorithm, and
Independent Component Analysis (ICA). Unity Standard Deviation (SD)
scaling and z-score normalization are standard procedures for feature
standardization (Taha et al., 2016).

DWT is beneficial for preprocessing and feature extraction in
signal analysis, and it provides a means to decompose ECG signals into
multiple temporal scales. While effective at precisely isolating QRS
complexes from other ECG segments, its practical utility for detecting
low-frequency waves, such as P and T waves, is limited. The DWT is
defined by:

+00
Tm,n = f_oo lpm,n (t)dt (1)
where, m and n are signal scale and location, respectively.
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Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are hierarchical feed-
forward systems inspired by the biological visual cortex. Unlike traditional
neural networks that rely on fully connected layers, CNNs employ
learnable filters applied to sub-regions of the input data. Within the
network’s architecture, the output of each layer is computed using a
consistent weight matrix (kernel) and an activation function applied to
each data block. CNNs are special types of neural networks that have
emerged as the most extensively used deep learning models in recent
years. These have made tremendous progress in two-dimensional (2D)
image processing. In medicine, CNNs are commonly used in medical
imaging for tasks such as tumor detection in brain MRIs. The use of CNNs,
however, has had a relatively low adoption rate in bio-signal processing,
especially for one-dimensional physiological signals such as
electrocardiography (ECG).

Each convolutional layer contains several parameters for its
filters. Although these filters cover the entire depth, they are usually small
compared to the input volume. In CNNs, the initial argument of the
convolution operation is the input, while the subsequent argument is the
kernel size. The generated feature map serves as the input for the next
layer. In the field of Machine Learning (ML), data is commonly
represented as a multidimensional array, and the filter’s kernel is typically
a multidimensional array of parameters learned by the learning algorithm.
An activation function (commonly sigmoid or tanh) is applied to introduce
non-linearity to this layer. If the kernel size is (km,kn), the two-dimensional
input data size is (m, n), and (sx, sy) denote the convolution strides, then
the output values d, ,, are computed using the following equation:

km—1 wkn—1
dy=nh (b + Zi=0 Zj:o dxo,yo * Wi,j) (2)
where, xg = x.s,x +1 and Yy, =y.s, +j are the input horizontal and

vertical positions and w; ; is the weight of the kernel at position (i, j).
The size of the output layer, my and n,, are given by:

mg = "k g
s @)
ng = n;:y +1

In the majority of CNN implementations, a pooling layer typically
follows the convolutional layers. The principal function of the pooling
layer is the reduction of the spatial dimensions of the input, resulting in a
decrease in the number of parameters and, consequently, the
computational load within CNNs. Each rectangular data block processed
by this layer yields a single output. While several methods exist, the most
common approach involves selecting the maximum value within the
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block. Therefore, the number of features will be reduced by a factor of 4
for a block of size 2 X 2.

Every input from one layer in a neural network is coupled to every
activation unit in the subsequent layer, indicating that the layers are fully
connected. In many prevalent ML models, the final layers are typically
fully connected, integrating features extracted by preceding layers to
produce the ultimate output. This layer is often the second most
computationally intensive, following the convolutional layer.

In the SoftMax classifier, the computed probabilities range from 0 to 1,
and their sum equals 1. This is mathematically expressed as:
e?i

oo @

o(2); =

Data Description and Preprocessing

For this study, the PhysioNet/Computing in Cardiology Challenge
2017 single—lead ECG training dataset was used. It has four annotations:
Normal (N), Atrial Fibrillation (A), Other (O), and Noisy (~), as shown in
Table 1.

Table 1: Arrhythmia classes, annotation codes, and dataset support.

Class Annotation Count

Normal rhythm N ny
Atrial fibrillation A np
Other rhythm (0) no
Noisy ~ n.
Total N=ny+ny+ng+n.

For heartbeat extraction, fixed—length ECG segments were
classified without explicit R—peak detection or beat cropping. This avoids
error propagation from misdetections and lets the CNN learn morphology
directly from raw segments. Records (in the format Axxxxxx.mat) were
loaded and each waveform was periodically tiled to T = 10,100 samples.
A datas-et-wise z—score (X —u)/o was applied, and the inputs were
reshaped to (T, 1). Labels were mapped as {N - 0,A - 1,0 - 2,~ —
3}. A random permutation yielded a 90%/10% training/validation split.
Table 2, below is the pseudocode that explains the working of the
algorithm.

Training for Classifying Patients

A patient—specific framing (segment—level classification per patient) was
adopted. The base training protocol used a four—way SoftMax with
categorical cross—entropy, Adam, batch size 275, and 20 epochs. Table 3
shows the base training protocols and hyperparameters.
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Table 2: Algorithm 1 ECG classification with 1D—CNN.

1: Input: training2017/, REFERENCE.csv, fixed length T = 10,100

2: Read labels; map (N,4,0,~) - {0,1, 2, 3}, one—hot encode

3: for each Axxxxxx.mat do

4: s<wvall0,:]; if |s|=T then x<s[:T] else tile(s) and truncate to T
STATE append x to X and one—hot label to Y

5: end for

6: Standardize X < (X — p)/o; reshape to (T, 1)

7: Shuffle; split into train (90%) and validation (10%)

8: Build 1D-CNN
(ConviD(128,55)—Pool(10)-Drop(0.5)=ConviD(128,25)—Pool(5)—=Drop(0.5)—ConvID(128,

10)—Pool(5)—=Drop(0.5)=ConviD(128,5)-GAP—Dense(256)—Drop(0.5)—Dense(128)—Drop(
0.5— Dense(64)—Drop(0.5)— Dense(4,softmax))

9: Train (Adam, CE, batch 275, epochs 20)

10: Evaluate validation, compute accuracy, precision, recall, F1, save confusion matrix and logs

Table 3: Base training protocol and hyperparameters.

Item Setting

Input length T = 10,100 (truncate/tile)

Normalization Global standardization (X — ) /o

Optimizer / Loss Adam (default) / Categorical cross—entropy

Batch size / Epochs 275/ 20 (base protocol)

Activations ReLU (hidden), Softmax (output)

Regularization Dropout 0.5 after each block and dense layer

Split Random shuffle; 90%/10% train/validation

Label map N-0, A>1, 0-2, ~—3 (one-hot)
Experiments

We performed three different experiments using CNN algorithms
by changing parameters such as changing number of layers, size of filters
etc. To avoid difficulties with overfitting, we used a dropout approach.
During training, the input value is arbitrarily set to 0 with a specified
probability (i.e., dropping units and their connections). After the
convolutional and totally associated layer, dropout layers with a likelihood
of 0.5 were implemented through the whole model.

The details of the setup of all three experiments are given as follows and
presented in Table 4.

Case I

In the first analysis, the total number of layers was 21. 5
convolutional layers were utilized having 128 neurons. The filter size was
55, 27, 21, 9, and 5 in first, second, third, fourth, and 5th layers,
respectively. 5 pooling layers were utilized. Initially, 4 pooling layers were
max-pooling and the last pooling layer was Global ave-pooling. The
window size was 10,5,5,5 in first, second, third, and fourth pooling layers,
respectively. 7 dropout layers were utilized,4 fully connected layers
having one output layer was utilized. Number of neurons were 256,128
and 64 respectively in first three fully connected layers and 4 neurons were

The Sciencetech 8 Volume 6, Issue 4, Oct-Dec 2025



Patient-Specific ECG Signal Classification with 1-D CNNs Ali et al.

in the output layer. The training size was set to 90%, the loss was
calculated using categorical cross entropy, the weight was optimized using
Adam’s optimizer, the batch size was set to 275, and the number of epochs
was set to 20.

Table 4: High—level specifications of the three CNN setups.

Case I Case I1 Case 111
Total layers 21 22 21
Conv layers (filters) 5 (128 each) 4 (128 each) 5 (128 each)
Kernel sizes (conv) 55,27,21,9,5 57,27,11,5 59,27,21,11,10
Pooling Max: 10,5,5,5; last Max: 10,5,5; last Max: 5,5,5,5,4 (no
GAP GAP GAP)
Dropout layers 7 6 7
Batch normalization - 4 layers -
Dense widths 256, 128, 64, (4) 256, 128, 64, (4) 256, 128, 64, (4)
Train split 90% 85% 90%
No. of Epochs 20 20 20
Batch size 275 275 275
Loss / Optimizer CE / Adam CE / Adam CE / Adam
Case Il

In the second analysis, absolute numbers of layers were 22. 4
convolutional layers were utilized having 128 neurons. The channel size
was 57,27, 11 and 5 in first, second, third and fourth layers individually.
4 pooling layers were utilized. Initially, 3 pooling layers were max-pooling
and last pooling layer was Global ave-pooling. Window size was 10, 5,
and 5 in first, second and third pooling layers, respectively. 6 dropout
layers were utilized. 4 Batch Normalization layers were utilized, 4 fully
connected layers having one output layer was utilized. Number of neurons
were 256,128 and 64 separately in initial three fully connected layers and
4 neurons were in the output layer. Preparing size was 85%, categorical
cross entropy was utilized for calculation loss. Adam’s optimization was
utilized for weights optimization; batch size was set to 275. Number of
epochs were set to 20.

Case 11

In the last analysis, the absolute number of layers was 21. 5
convolutional layers were utilized having 128 neurons. The channel size
was 59,27,21,11 and 10 in 1st, 2nd, 3rd, 4th, and 5th layers, respectively.
5 pooling layers were utilized. All pooling layers were max pooling. The
window size was 5, 5, 5, 5, and 4 in 1st, 2nd, 3rd fourth and 5th pooling
layers, respectively. 7 dropout layers were used, 4 fully connected layers
having one output layer was utilized. Number of neurons were 256,128
and 64 separately in initial three fully connected layers and 4 neurons were
in the output layer. The training size was 90%, categorical cross entropy
was utilized for figuring calculation loss. Adam’s optimizer was utilized
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for weight optimization, the batch size was set to 275, and epochs were set
to 20.

Performance Metrics

We reported the overall accuracy together with per—class
precision, recall, and F1, and we summarized them as macro and weighted
averages for all analyses. For a class i with counts TP;, FP;, FN; and support
n; (total N = Y; n;), the per-class precision, recall, and F1 are calculated

as:
TP;

Precision; = (5)
TP;+FP;
TP;
Recall; = - (6)
TP;+FN;
2 Precision; Recall;
F1; = el (7)

o Precision;+Recall;

Results and Discussion

We evaluated three 1-D CNN configurations (Case I-11I) on the
PhysioNet/CinC 2017 four-class task (N, A, O, ~), following the common
protocol described in the previous section. Figure 2 and 3 shows the
accuracy and loss trajectories, respectively, and Figure 4 shows the
confusion matrices. Table 5 summarizes the validation metrics; Tables 6—
8 report per-class precision/recall/F1 and supports; and Table 9 reports the
challenge scoring proxy (mean F1 over {N, A, O}).

It can be observed that Experiment 1 achieved the strongest
validation accuracy (0.8148) and weighed F1 (0.8025), with the highest
challenge-proxy F1 over {N,A,O} (0.7555). Experiment 2 delivered a
more balanced treatment of the noise class (~) (recall 0.767) but a lower
overall accuracy (0.7758) driven by reduced recall for class O (0.447).
Experiment 3 showed the weakest macro performance (macro F1 0.5098),
dominated by failure to retrieve the noise class (~: precision/recall = 0/0
on the validation split). Across all three models, class N is consistently
well recalled (= 0.96-0.97), while A and O are the principal error modes,
reflecting known difficulties in separating atrial fibrillation and
heterogeneous “other” rhythms when trained with simple class-balanced
cross-entropy and no explicit imbalance handling.

Relative to Case Il and Case III, Case I’s filter schedule
{55,25,10,5} followed by global averaging appears to strike the best
locality/context trade-off for this dataset: it preserves high recall for N
(0.961) without sacrificing AF detection (A recall 0.831) and avoids over-
suppressing O (O recall 0.581). Experiment 2’s stronger performance on
the noise class (recall 0.767) coincides with a modest drop in O, plausibly
reflecting different inductive bias from its configuration (as specified in
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the experimental design) that encourages aggressive denoising at the cost
of borderline O segments. Case /I, which pools uniformly and compresses
aggressively, under-recognizes minority patterns, consistent with its low
macro scores and the ~ miss.
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Figure 2: Comparison of the accuracy curves across the three configurations.
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Training/Validation Loss
T T T

12 T T
——Training
——Validation
11F 3
1+ 4
" 091 b
]
o
a
081 .
07F b
o<
0.6 - b
05 L L L i L L . L L
[] 2 4 6 8 10 12 14 16 18 20
Epoch
(@)
Training/Validation Loss
1.6 T T T T T T
[——Training
|——Validation
141 A
12
o
g 1
-
0.8
06
04 L I L L L L L . L
0 2 4 6 8 10 12 14 16 18 20
Epoch
Training/Validation Loss
1.2 T T T T T
[——Training
11f R
1k
w
Sool
-
0.8
07
06 L I I L i i L | L
0 2 4 6 8 10 12 14 16 18 20
Epoch
(©

Figure 3: Comparison of the loss curves across the three configurations.

Table 5: Validation summary metrics across experiments.

Exp. Acc;lrac Precision (macro) (lll{ljlcc?‘lol) F1 (macro) Pre(i:,s)lon Recall (w) F1 (w)
Casel 0.8148 0.7679 0.6557 0.6619 0.8251 0.8148 0.8025
Case Il  0.7758 0.7447 0.7009 0.7047 0.7769 0.7758 0.7566

Case 11 0.7585 0.5309 0.5203 0.5098 0.7314 0.7585 0.7249
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Table 6: Per-class validation metrics for Case 1.

Class Precision Recall F1 Support
N 0.8419 0.9608 0.8974 510
A 0.5684 0.8308 0.6750 65
(0} 0.8614 0.5813 0.6942 246
~ 0.8000 0.2500 0.3810 32

Table 7: Per-class validation metrics for Case II.

Class Precision Recall F1 Support
N 0.7819 0.9650 0.8639 743
A 0.7959 0.6240 0.6996 125
(¢} 0.7783 0.4472 0.5680 369
~ 0.6226 0.7674 0.6875 43

Table 8: Per-class validation metrics for Case II1.

Class Precision Recall F1 Support
N 0.7882 0.9725 0.8707 509
A 0.6146 0.7195 0.6629 82
(¢} 0.7209 0.3891 0.5054 239

~ 0.0000 0.0000 0.0000 23

Table 9: Challenge-proxy score: mean F1I over {N, A, O}

Experiment Mean F1 (N, A, O)
Case | 0.7555
Case 11 0.7105
Case 111 0.6797
. N Confusion Matrix
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400
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Figure 4: Confusion matrices for (a) Case I, (b) Case II, and (c) Case 111

Comparison with the Contemporary Methods

To position our compact 1-D CNN against peer approaches on the
CinC/PhysioNet 2017 arrhythmia task, we rely on the macro—F1 over {N,
A, O} and restrict the comparison to internal-validation results reported
on the public training set (i.e., cross-validation or held-out splits), which
is methodologically comparable to our 90/10 held-out protocol. This
avoids conflating results from the hidden-test leaderboard with in-sample
estimates and provides a fair baseline-oriented perspective. Table 10
summarizes the comparison; we refer the reader to the original papers for
implementation details beyond the brief model descriptors.

Table 10: Internal-validation comparison on CinC/PhysioNet 2017 training set

Method Model/Features Eval. regime Flyao
Proposed work (Case I) 1-D CNN (single-lead, fixed-length) 90/10 split (held out) 0.756
1-D CNN + BN (shallower conv 0 o (held out) ~ 0.710

Proposed work (Case IT)

stack)
Proposed work (Case I1I) 1-D CNN (uniform max-pool) 90/10 split (held out) 0.680
Zihlmann et al. (2017) CNN/GRU, end-to-end 5-fold CV 0.792
Warrick & Homsi (2017) CNN + LSTM, end-to-end 10-fold CV 0.83 £0.02
Zabihi et al. (2017) 491 hand-crafted features + RF 10-fold CV 0.819 + 0.02

Deep models + expert features

Hong et al. (2017) (ensemble)

repeated CV up to 0.866

From the table, Case I (Flyao = 0.756, accuracy = 0.815)
establishes a credible single-model, single-lead baseline that is
intentionally free of handcrafted features, ensembling, or sequence
modules. The fact that it trails heavier systems) and ensemble/feature-
hybrid methods is consistent with their additional capacity to model long-
range temporal dependencies or to fuse heterogeneous feature views. By
contrast, our architecture deliberately emphasizes compactness and
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reproducibility, an end-to-end learning from fixed-length segments, and
minimal preprocessing.

The per-class behavior (from our confusion matrices) explains
much of the gap. All three configurations retrieve Normal with high recall,
but the “Other” class remains the principal source of error due to its
heterogeneity, and the Noise class (~) is sensitive to pooling schedules.
Case I’s kernel schedule (55/25/10/5) with global average pooling yields
the strongest balance across N/A/O, whereas Case II (with batch
normalization) improves robustness to noise at some cost to O-recall, and
Case I1I’s uniform pooling compresses away minority patterns. These are
standard bias—variance trade-offs which the sequence models and
ensembles mitigate by adding temporal context and model diversity,
respectively.

However, it is noteworthy that the proposed model achieves
competitive internal-validation performance without the complexity of
feature engineering or assembling, making it suitable as a deployable
patient-specific backbone where transparency, low latency, and
straightforward retraining are valued. Industrially, the proposed model is
light and computationally efficient hence making it appropriate to be
incorporated in mobile health applications and ECG wearable devices.
Compact models of this kind are of special interest in resource-constrained
healthcare settings, in which high-throughput or cloud-based computation
cannot be easily accessed. This ability to provide real-time arrhythmia
detection on low power platforms highlights the practical value of such a
solution, which is a way of providing scaled clinical decision support and,
ultimately, constant patient monitoring.

Conclusion

We have introduced a small end-to-end, one-dimensional
convolutional network to patient-specific classification of ECG rhythms
in single-lead PhysioNet/CinC 2017. This model works on fixed length
raw fragments with no use of handcrafted features or beat detectors. The
wide to narrow kernel schedule with global average pooling produced the
best balance between local morphology and the larger context rhythm over
three architectural variants. In experimental analysis, we found that the
recall of the Normal class is consistently high, with the remaining errors
mostly occurring in heterogeneous other rhythms and noisy pieces, which
are reflected in the class imbalance and boundary cases in single-lead
records. The presented solution is purposely sparse, with only one model,
insignificant preprocessing, clear hyperparameters, and consequently
reproducible, easy to deploy, and competitive at the level of in-house
validation. Although the suggested framework proves to be competitive
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with a lean architecture, a number of constraints still exist including the
need of dataset diversity, more rigorous validation procedures, and
hyperparameter tuning etc. In future the framework has to extended to
multi-lead and multi-center data, add higher levels of optimization and
adaptive learning, and consider the possibility of using hybrid CNN-
attention models, which maintain cost-efficiency but achieve a better
representation of time. These instructions will also enhance the relevance
of the suggested method in the clinical and industrial practices.
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