Deep Learning-Based PDE Solver: PINN Versus Classical Method

for the 1D Heat Equation
Salah Uddin", Ehsan Ellahi Ashraf’, Mahathir Mohamad?, Muhammad Ahmad Hafeez?,
Imran Thsan™

Abstract

Partial Differential Equations (PDEs) play a vital role in modeling heat transfer
and diffusion phenomena in science and engineering, ensuring the development
of accurate and efficient numerical solvers for consistent simulations.
Conventional discretization-based procedures often involve mesh production for
regular geometries and frequently encounter complications for irregular cases
and sparse data. Currently, Machine Learning approaches, specifically Physics-
Informed Neural Networks (PINNs), have emerged as capable mesh-free
alternatives that integrate governing physical rules directly into the learning
method. In this paper, PINNs have been applied to a One-Dimensional (1D) heat
equation. The PINN model has been formulated by using DeepXDE and compared
with the Finite Difference Method (FDM). The governing equation (GE), along
with initial and boundary conditions, is rooted in the loss function, which
monitors the training process, allowing the PINN to achieve physical stability by
learning the result over the entire spatio-temporal field. The application
influences programmed differentiation for the resulting derivatives and reduces
the residual error, rather than relying on explicit discretization. Results suggest
that the neural networks successfully approximate the solution to the heat
equation with competing error rates. Moreover, it is flexible for noisy data and
complex domains. Comparative convergence behavior and visualization results
are presented to demonstrate the effectiveness of the PINN framework.

Keywords: Physics-Informed Neural Networks, Finite Difference Method,
DeepXDE, Partial Differential Equations.

Introduction
Partial Differential Equations (PDEs) are used as a basic
mathematical instrument in scientific computations and serve as a
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backbone to model physical systems that frequently change over space and
time in engineering. In addition to the Artificial Intelligence (Al) in
mathematics, Physics-informed neural networks (PINNs) have been
developed and have gained a practical and transformative computational
approach with Deep Learning and a robust background for solving PDE:s,
along with other artificial neural networks.

Traditional numerical methods for explaining time-dependent
diffusion equations normally depend on mesh schemes like Finite
Difference Method (FDM), Finite Element Method (FEM), and Finite
Volume Method (FVM). These methods convert continuous differential
operators into algebraic structures or unstructured discretization. Even
though such methods are numerically well-known and recognized in the
engineering domain, their presentation is frequently faced with mesh
resolution, stability criteria, and time-stepping restrictions. Moreover,
mesh generation and improvement could develop costly computations for
the complicated geometry or complex boundary conditions, thus inspiring
the exploration for alternate grid-free computational models.

When solving PDEs analytically, complex equations with a
nonlinear nature typically lack a general solution, while numerical
methods are faced with computational issues, precision constraints, and
potential variability (Blechschmidt & FErnst, 2021). Although exact
solutions are guaranteed, analytical methods are frequently reasonable for
a narrow range of problems; however, numerical methods deliver
approximate results that are applied for complex, real-life problems, but
present space for errors and involve major computational power in
addition to high accuracy (Alshanti et al., 2023; Raman, 2024; El-Metwaly
& Kamal, 2024; Giirbliz & Fernandez, 2024; Lima et al., 2024; Wei,
2025).

PINNs resolve these complications by inserting the governing
differential equation right into the training phase of a neural network.
Despite depending on a discrete mesh, the result is estimated by a
continuous function operated by the neural networks, and DeepXDE is
employed for automatic spatial and temporal differentiation. This
approach imposes the residual of the differential equation, initial and
boundary conditions instantaneously, leading the model to train on the
physically reliable solution over the complete domain. Subsequently, the
method associates data-driven approximations with basic conservation
laws, linking the breach between Machine Learning and conventional
scientific computing.

Regardless of the rapid advancement of PINNs, many studies are
conducted mainly on complex multi-dimensional standards or highly
dedicated applications, which may obscure the major performance of the
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method. Organized estimation on canonical problems with established
features remains necessary to recognize convergence properties,
computational proficiency, and numerical strength. The One-Dimensional
(1D) heat equation offers a perfect model for this situation because it holds
well-defined physical understanding, well-known reference solutions, and
undeviating numerical standards for comparison.

Even though PINNs are extensively applied in PDEs (Alianakh et
al., 2025; Almusallam et al., 2025; Chang et al., 2024; Guo et al., 2020;
Hu et al., 2022; Jiang et al., 2023; Katsikis et al., 2022; Luo et al., 2025;
Maczuga et al., 2025; Tanyu et al., 2023; Oh & Jo, 2025; Zhang, 2025),
their enactment on simple scale problems is quiet and obviously not
understood. In fact, one-dimensional heat equations have been usually
studied, but related investigations remain scattered. Existing studies
mostly emphasize innovative simulations despite fundamental clarity and
reproducibility. Conventional numerical methods, like the FDM, are well-
structured; however, relative studies with deep neural networks are
limited. Consequently, the comparative study will fill a significant
research gap.

To overcome these problems, this study performs a computational
assessment between a PINN solution and a classical FDM solver under
identical numerical conditions. The key findings of this computational
study include: (a) formation of a PINN coding tailored to the 1D heat
equation; (b) application of a conventional FDM baseline for reasonable
benchmarking; (c) numerical assessment using error norms, convergence
performance, and computational rate; (d) investigation of compensations
and confines of both methods for applied scientific computing; (e)
demonstration of the viability of Machine Learning based solvers for low-
dimensional heat models.

The rest of this study is organized as follows. The first section
describes the mathematical model of the 1D heat equation and the initial
and boundary conditions. The second section introduces the architecture
and training model of the proposed PINN. The third section describes the
FDM scheme. The fourth section explains experimental results with
graphical illustrations and comparative analysis, followed by concluding
remarks and future research directions in the final section.

Mathematical Model

Governing Equation (GE)
In Equation 1, the 1D PDE represents the heat conduction model,

mathematically denoted as,
ou_ T

E = aaxz. (1)
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Here, u(x, t) represents the temperature at x € [0, 1] and time t €
[0, 1], with thermal diffusivity a.

Initial and Boundary Conditions (ICs and BCs)

To ensure a well-posed result of the 1D heat equation, suitable ICs
and BCs are described. The IC in Equation 2 states the temperature
distribution along the rod at time t = 0, whereas the BCs in Equation 3
define the temperature distribution at the spatial boundaries. In the present
work, Dirichlet BCs are enforced at split ends of the field, allowing both
PINN and FDM models to study and fulfil the physical constraints of the
1D heat model.

u(x, 0) = sin(mx). (2)
u(0,t) = 0, u(1, t) =0. 3)

Analytical Solution (AS)

For authentication, the analytical solution of the 1D heat equation,
as given in Equation 4, is achieved by applying the separation of variables
method. This method produces the spatial and temporal measures of the
solution, causing a series form equation that fulfils the heat equation and
the given ICs and BCs. The solution functions as a standard to evaluate
the correctness and convergence of the suggested PINN and the traditional
FDM.

u(x, t) = e ™t sin(mx). (4)

Physics-Informed Neural Networks (PINNs)

Before defining the PINNs architecture, physics-based data set,
which will be trained on time-dependent PDE, geometry and time domain,
heat equation, initial and boundary conditions, along with the collocation
points, are provided.

Hidden Layers

| Hidden Layer 1 ] | Hidden Layer 2 | | Hidden Layer 3 |

Input
Layer )
Input
(x 1) = -

170 Neurons, 170 Neurons, 170 Neurons,
Activation: tanh Activation: tanh Activation: tanh

Physics & Boundary’
Conditions: =
Pons L= Lppg + Lic + Lgc Adam + L-BFGS

Lic
Lgc

Figure 1: PINN Architecture for the 1D heat equation.
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A fully connected feed-forward neural networks, has been model
the heat equation solution. The architecture composed of five layers with
two inputs layer, three further hidden layers of 170 neurons each and
finally the output layer. Moreover, the network is trained with an
activation function tanh, using Adam (Ir = 0.001) initially for 2000 epochs
and then developed with L-BFGS. Furthermore, predictions are then
computed on 4000 test points sampled from the geometry-time domain.

Loss Function (LF)

The loss function demonstrates how sound the PINN learn the
governing equations along with the ICs and BCs. It is usually framed as a
weighted sum of the PDE residual loss and the constraint losses.
Decreasing this loss imposes the physical laws while training the NN.

L = Lppg + Lic + Lpcy- (5)

Automatic Differentiation (AD)

Automatic differentiation performs the spatial and temporal
differentiation by taking derivatives of the NN output with respect to
inputs. Which are obligatory to assess the heat equation residual without
numerical approximation. This enables the exact computation of gradients
during training. DeepXDE computes u;, Uy, Uy, using TensorFlow
autograd.

Classical Numerical Method (Finite Difference)

The FDM addresses the corresponding 1D heat equation by
discretizing time and space using points and approximating derivatives
with difference formulas. As a result, a system of algebraic equations is
obtained which allow us to solve PDE iteratively. Describe FDM scheme

as:

uMtt =ult (@l —2ul Ul y), T = a%. (6)
This equation is implemented during the coding through the NumPy

library in Python.

Results and Discussion

For the one-dimensional heat equation, both of the optimizers
nearly overlap and quickly converged. Moreover, the loss drop indicates
that PDE along with the initial and boundary conditions are satisfied by
the PINN with high accuracy. In the PINN training phase, boundary
conditions are integrated directly through the LF rather than being
prescribed explicitly as in traditional numerical methods like FDM. In fact,
Adam, the first optimizer, trains the model very close to the solution, and
leaves slight refinements for the second L-BFGS optimizer.
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Loss Curve

The loss curve in Figure 2 shows the progress of the total LF
throughout the training session of the PINN. It illustrates how well the NN
reduces the PDE residual, ICs, and BCs errors over time. A gradually
reducing and convergent behavior shows steady training and enhanced
model accuracy.

Adam vs L-BFGS Loss Curves (Clean)
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L-BFGS Loss
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Figure 2: Adam versus L-BFGS iterative losses.

Predicted Versus Analytical Solution

The scatter plot of the true solution in Figure 3, in space and time
indicates the magnitude from ¢t = 0 tot = 1. Dissipative dynamics far
from the thermodynamic equilibrium have been observed, which is larger
near t = 0, than gradually decreasing to zero near ¢ = (.5. Moreover, rapid
decay has been observed near t = 0.3 — 0.5, causing PINN training
difficulties due to stiffness.

True Solution
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Figure 3: True solution versus time t.
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PINN-predicted solution in Figure 4, captures the same decay
pattern previously observed in the true solution. However, the reproduced
plot shows the qualitative time decay pattern with small differences.

The absolute error plot in Figure 5, visualizes the differences
between the solutions. A very small error across the heat equation domain
indicates accurate PINN learning.

PINN Prediction
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Figure 4: PINN prediction versus time t.
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Figure 5: Absolute Error.

In Figure 6, the PINN solution is compared with the True and
FDM solutions. PINN learn to reproduce the exact overall shape of the
true solution; however, it miscalculates the true values frequently showing
the gradual bias. Moreover, misreading indicates that PINN learned the
qualitative aspect but lacks quantitative behavior.
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Figure 6: PINN versus FDM versus FDM solution at t =0.3.

FDM is computationally capable for conventional forward
problems defined on regular grids. Its scaling is linear with the number of
spatial and temporal grid points, performed through classical matrix
operations. Consequently, for large-scale well-posed problems with
specific meshes, it generally leaves PINNs behind in terms of time and
memory consumption. On the other hand, PINNs need training on intense
neural networks by decreasing a composite loss function that comprises
PDE residual, boundary conditions, and initial conditions. This exercise
phase contains frequent estimations of DeepXDE and iterative optimizers,
making it computationally more expensive, as the number of collocation
points increases. Consequently, for larger problem sizes, the
computational cost of PINNs grows significantly compared to FDM.

Disparate traditional mesh-based NM, such as the FDM, which
involve spatial and temporal discretization, PINNs learn the solution right
from the GE in a mesh-free mode. As compared to the foundation work on
PINN by Raissi et al. (2019), the current effort incorporates AD to
precisely impose the heat equation residual, though satisfying the ICs and
BCs. In association with the previous work that mainly established PINNs
or standard solvers individually, this work offers an organized comparison
between PINN and FDM. Related works have studied PINN-based
learning for mechanics problems (Dalton et al., 2023), while the projected
method precisely marks the heat equation and highlights procedural
authentication. These differences provide the strength and practical use of
the suggested work.

Conclusion

This study examined the efficiency of Machine Learning based
solver for PDEs over a systematic comparison between a PINNs
framework and a classical FDM scheme for the 1D heat equation. Both
methods were applied under similar conditions to assess their
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mathematical behavior, approximation ability, and computational
efficiency. PINNs are the best alternative to classical methods. Highly
accurate PDE approximations can be made possible by using PINN. It has
been demonstrated that the neural networks resolution carefully shadows
the analytical and numerical readings through the complete spatio-
temporal domain, attaining small residual and prediction slips while
preserving smooth effect profiles. Moreover, the convergence features
show that surrounding the leading physical constraints inside the loss
function permits steady learning instead of explicit mesh discretization.
Due to its flexible nature, it is more suitable for irregular or complex
geometries. Future work can be extended to the 2-dimensional PDEs,
improving training through adaptive loss weighting, and exploring
enhanced or extended PINN frameworks with better accuracy and
stability.
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