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Abstract 

Partial Differential Equations (PDEs) play a vital role in modeling heat transfer 

and diffusion phenomena in science and engineering, ensuring the development 

of accurate and efficient numerical solvers for consistent simulations. 

Conventional discretization-based procedures often involve mesh production for 

regular geometries and frequently encounter complications for irregular cases 

and sparse data. Currently, Machine Learning approaches, specifically Physics-

Informed Neural Networks (PINNs), have emerged as capable mesh-free 

alternatives that integrate governing physical rules directly into the learning 

method. In this paper, PINNs have been applied to a One-Dimensional (1D) heat 

equation. The PINN model has been formulated by using DeepXDE and compared 

with the Finite Difference Method (FDM). The governing equation (GE), along 

with initial and boundary conditions, is rooted in the loss function, which 

monitors the training process, allowing the PINN to achieve physical stability by 

learning the result over the entire spatio-temporal field. The application 

influences programmed differentiation for the resulting derivatives and reduces 

the residual error, rather than relying on explicit discretization. Results suggest 

that the neural networks successfully approximate the solution to the heat 

equation with competing error rates. Moreover, it is flexible for noisy data and 

complex domains. Comparative convergence behavior and visualization results 

are presented to demonstrate the effectiveness of the PINN framework. 

Keywords: Physics-Informed Neural Networks, Finite Difference Method, 

DeepXDE, Partial Differential Equations. 

Introduction 

Partial Differential Equations (PDEs) are used as a basic 

mathematical instrument in scientific computations and serve as a 
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backbone to model physical systems that frequently change over space and 

time in engineering. In addition to the Artificial Intelligence (AI) in 

mathematics, Physics-informed neural networks (PINNs) have been 

developed and have gained a practical and transformative computational 

approach with Deep Learning and a robust background for solving PDEs, 

along with other artificial neural networks. 

Traditional numerical methods for explaining time-dependent 

diffusion equations normally depend on mesh schemes like Finite 

Difference Method (FDM), Finite Element Method (FEM), and Finite 

Volume Method (FVM). These methods convert continuous differential 

operators into algebraic structures or unstructured discretization. Even 

though such methods are numerically well-known and recognized in the 

engineering domain, their presentation is frequently faced with mesh 

resolution, stability criteria, and time-stepping restrictions. Moreover, 

mesh generation and improvement could develop costly computations for 

the complicated geometry or complex boundary conditions, thus inspiring 

the exploration for alternate grid-free computational models. 

When solving PDEs analytically, complex equations with a 

nonlinear nature typically lack a general solution, while numerical 

methods are faced with computational issues, precision constraints, and 

potential variability (Blechschmidt & Ernst, 2021). Although exact 

solutions are guaranteed, analytical methods are frequently reasonable for 

a narrow range of problems; however, numerical methods deliver 

approximate results that are applied for complex, real-life problems, but 

present space for errors and involve major computational power in 

addition to high accuracy (Alshanti et al., 2023; Raman, 2024; El-Metwaly 

& Kamal, 2024; Gürbüz & Fernandez, 2024; Lima et al., 2024; Wei, 

2025). 

PINNs resolve these complications by inserting the governing 

differential equation right into the training phase of a neural network. 

Despite depending on a discrete mesh, the result is estimated by a 

continuous function operated by the neural networks, and DeepXDE is 

employed for automatic spatial and temporal differentiation. This 

approach imposes the residual of the differential equation, initial and 

boundary conditions instantaneously, leading the model to train on the 

physically reliable solution over the complete domain. Subsequently, the 

method associates data-driven approximations with basic conservation 

laws, linking the breach between Machine Learning and conventional 

scientific computing. 

Regardless of the rapid advancement of PINNs, many studies are 

conducted mainly on complex multi-dimensional standards or highly 

dedicated applications, which may obscure the major performance of the 
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method. Organized estimation on canonical problems with established 

features remains necessary to recognize convergence properties, 

computational proficiency, and numerical strength. The One-Dimensional 

(1D) heat equation offers a perfect model for this situation because it holds 

well-defined physical understanding, well-known reference solutions, and 

undeviating numerical standards for comparison. 

Even though PINNs are extensively applied in PDEs (Alianakh et 

al., 2025; Almusallam et al., 2025; Chang et al., 2024; Guo et al., 2020; 

Hu et al., 2022; Jiang et al., 2023; Katsikis et al., 2022; Luo et al., 2025; 

Maczuga et al., 2025; Tanyu et al., 2023; Oh & Jo, 2025; Zhang, 2025), 

their enactment on simple scale problems is quiet and obviously not 

understood. In fact, one-dimensional heat equations have been usually 

studied, but related investigations remain scattered. Existing studies 

mostly emphasize innovative simulations despite fundamental clarity and 

reproducibility. Conventional numerical methods, like the FDM, are well-

structured; however, relative studies with deep neural networks are 

limited. Consequently, the comparative study will fill a significant 

research gap. 

To overcome these problems, this study performs a computational 

assessment between a PINN solution and a classical FDM solver under 

identical numerical conditions. The key findings of this computational 

study include: (a) formation of a PINN coding tailored to the 1D heat 

equation; (b) application of a conventional FDM baseline for reasonable 

benchmarking; (c) numerical assessment using error norms, convergence 

performance, and computational rate; (d) investigation of compensations 

and confines of both methods for applied scientific computing; (e) 

demonstration of the viability of Machine Learning based solvers for low-

dimensional heat models. 

The rest of this study is organized as follows. The first section 

describes the mathematical model of the 1D heat equation and the initial 

and boundary conditions. The second section introduces the architecture 

and training model of the proposed PINN. The third section describes the 

FDM scheme. The fourth section explains experimental results with 

graphical illustrations and comparative analysis, followed by concluding 

remarks and future research directions in the final section. 

Mathematical Model 

Governing Equation (GE) 

In Equation 1, the 1D PDE represents the heat conduction model, 

mathematically denoted as, 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2 .                                                 (1)  
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Here, 𝑢(𝑥,  𝑡)   represents the temperature at 𝑥  ∈  [0,  1]   and time 𝑡  ∈
[0,  1] , with thermal diffusivity 𝛼. 

Initial and Boundary Conditions (ICs and BCs) 

To ensure a well-posed result of the 1D heat equation, suitable ICs 

and BCs are described. The IC in Equation 2 states the temperature 

distribution along the rod at time t = 0, whereas the BCs in Equation 3 

define the temperature distribution at the spatial boundaries. In the present 

work, Dirichlet BCs are enforced at split ends of the field, allowing both 

PINN and FDM models to study and fulfil the physical constraints of the 

1D heat model. 
𝑢(𝑥,  0) = sin(𝜋𝑥).                                       (2) 

𝑢(0,  𝑡)  =  0,  𝑢(1,  𝑡) = 0.                                  (3) 

Analytical Solution (AS) 

For authentication, the analytical solution of the 1D heat equation, 

as given in Equation 4, is achieved by applying the separation of variables 

method. This method produces the spatial and temporal measures of the 

solution, causing a series form equation that fulfils the heat equation and 

the given ICs and BCs. The solution functions as a standard to evaluate 

the correctness and convergence of the suggested PINN and the traditional 

FDM. 

𝑢(𝑥,  𝑡)  =  𝑒−𝜋2𝑡  sin(𝜋𝑥).                                  (4) 

Physics-Informed Neural Networks (PINNs) 

Before defining the PINNs architecture, physics-based data set, 

which will be trained on time-dependent PDE, geometry and time domain, 

heat equation, initial and boundary conditions, along with the collocation 

points, are provided. 

 
Figure 1: PINN Architecture for the 1D heat equation. 
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A fully connected feed-forward neural networks, has been model 

the heat equation solution. The architecture composed of five layers with 

two inputs layer, three further hidden layers of 170 neurons each and 

finally the output layer. Moreover, the network is trained with an 

activation function tanh, using Adam (lr = 0.001) initially for 2000 epochs 

and then developed with L-BFGS. Furthermore, predictions are then 

computed on 4000 test points sampled from the geometry-time domain. 

Loss Function (LF) 

The loss function demonstrates how sound the PINN learn the 

governing equations along with the ICs and BCs. It is usually framed as a 

weighted sum of the PDE residual loss and the constraint losses. 

Decreasing this loss imposes the physical laws while training the NN. 
𝐿  =  𝐿𝑃𝐷𝐸 + 𝐿𝐼𝐶 + 𝐿𝐵𝐶𝐿 .                                     (5) 

Automatic Differentiation (AD) 

Automatic differentiation performs the spatial and temporal 

differentiation by taking derivatives of the NN output with respect to 

inputs. Which are obligatory to assess the heat equation residual without 

numerical approximation. This enables the exact computation of gradients 

during training. DeepXDE computes 𝑢𝑡 ,  𝑢𝑥 ,  𝑢𝑥𝑥  using TensorFlow 

autograd. 

Classical Numerical Method (Finite Difference) 

The FDM addresses the corresponding 1D heat equation by 

discretizing time and space using points and approximating derivatives 

with difference formulas. As a result, a system of algebraic equations is 

obtained which allow us to solve PDE iteratively. Describe FDM scheme 

as: 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝑟(𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 ),   𝑟 = 𝛼

Δ𝑡

Δ𝑥2 .               (6)  

This equation is implemented during the coding through the NumPy 

library in Python. 

Results and Discussion 

For the one-dimensional heat equation, both of the optimizers 

nearly overlap and quickly converged. Moreover, the loss drop indicates 

that PDE along with the initial and boundary conditions are satisfied by 

the PINN with high accuracy. In the PINN training phase, boundary 

conditions are integrated directly through the LF rather than being 

prescribed explicitly as in traditional numerical methods like FDM. In fact, 

Adam, the first optimizer, trains the model very close to the solution, and 

leaves slight refinements for the second L-BFGS optimizer. 
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Loss Curve 

The loss curve in Figure 2 shows the progress of the total LF 

throughout the training session of the PINN. It illustrates how well the NN 

reduces the PDE residual, ICs, and BCs errors over time. A gradually 

reducing and convergent behavior shows steady training and enhanced 

model accuracy. 
 

 
Figure 2: Adam versus L-BFGS iterative losses. 

Predicted Versus Analytical Solution 

The scatter plot of the true solution in Figure 3, in space and time 

indicates the magnitude from 𝑡 = 0 𝑡𝑜 𝑡 = 1. Dissipative dynamics far 

from the thermodynamic equilibrium have been observed, which is larger 

near 𝑡 = 0, than gradually decreasing to zero near t = 0.5. Moreover, rapid 

decay has been observed near 𝑡 ≈ 0.3 − 0.5 , causing PINN training 

difficulties due to stiffness. 
 

 
Figure 3: True solution versus time t. 
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PINN-predicted solution in Figure 4, captures the same decay 

pattern previously observed in the true solution. However, the reproduced 

plot shows the qualitative time decay pattern with small differences. 

The absolute error plot in Figure 5, visualizes the differences 

between the solutions. A very small error across the heat equation domain 

indicates accurate PINN learning. 

 

 
Figure 4: PINN prediction versus time t. 

 

 
Figure 5: Absolute Error. 

 

In Figure 6, the PINN solution is compared with the True and 

FDM solutions. PINN learn to reproduce the exact overall shape of the 

true solution; however, it miscalculates the true values frequently showing 

the gradual bias. Moreover, misreading indicates that PINN learned the 

qualitative aspect but lacks quantitative behavior. 
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Figure 6: PINN versus FDM versus FDM solution at t =0.3. 

 

FDM is computationally capable for conventional forward 

problems defined on regular grids. Its scaling is linear with the number of 

spatial and temporal grid points, performed through classical matrix 

operations. Consequently, for large-scale well-posed problems with 

specific meshes, it generally leaves PINNs behind in terms of time and 

memory consumption. On the other hand, PINNs need training on intense 

neural networks by decreasing a composite loss function that comprises 

PDE residual, boundary conditions, and initial conditions. This exercise 

phase contains frequent estimations of DeepXDE and iterative optimizers, 

making it computationally more expensive, as the number of collocation 

points increases. Consequently, for larger problem sizes, the 

computational cost of PINNs grows significantly compared to FDM. 

Disparate traditional mesh-based NM, such as the FDM, which 

involve spatial and temporal discretization, PINNs learn the solution right 

from the GE in a mesh-free mode. As compared to the foundation work on 

PINN by Raissi et al. (2019), the current effort incorporates AD to 

precisely impose the heat equation residual, though satisfying the ICs and 

BCs. In association with the previous work that mainly established PINNs 

or standard solvers individually, this work offers an organized comparison 

between PINN and FDM. Related works have studied PINN-based 

learning for mechanics problems (Dalton et al., 2023), while the projected 

method precisely marks the heat equation and highlights procedural 

authentication. These differences provide the strength and practical use of 

the suggested work. 

Conclusion 

This study examined the efficiency of Machine Learning based 

solver for PDEs over a systematic comparison between a PINNs 

framework and a classical FDM scheme for the 1D heat equation. Both 

methods were applied under similar conditions to assess their 
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mathematical behavior, approximation ability, and computational 

efficiency. PINNs are the best alternative to classical methods. Highly 

accurate PDE approximations can be made possible by using PINN. It has 

been demonstrated that the neural networks resolution carefully shadows 

the analytical and numerical readings through the complete spatio-

temporal domain, attaining small residual and prediction slips while 

preserving smooth effect profiles. Moreover, the convergence features 

show that surrounding the leading physical constraints inside the loss 

function permits steady learning instead of explicit mesh discretization. 

Due to its flexible nature, it is more suitable for irregular or complex 

geometries. Future work can be extended to the 2-dimensional PDEs, 

improving training through adaptive loss weighting, and exploring 

enhanced or extended PINN frameworks with better accuracy and 

stability. 

References 

Alianakh, D., Dyyak, I., & Makar, I. (2025). Development of physics-

informed neural networks for solving partial differential 

equations. In Proceedings of the International Workshop on 

Computer Modeling and Intelligent Systems. 

Almusallam, N., Al Nuaimi, B. T., Alkattan, H., Abotaleb, M., & Dhoska, 

K. (2025). Physics-informed neural networks for solving the heat 

equation in thermal engineering. Int. J. Tech. Phys. Probl. 

Eng, 17(1), 375-382. 

Alshanti, W. G., Batiha, I. M., Hammad, M. M. A., & Khalil, R. (2023). 

A novel analytical approach for solving partial differential 

equations via a tensor product theory of Banach spaces. Partial 

Differential Equations in Applied Mathematics, 8, 100531. 

Blechschmidt, J., & Ernst, O. G. (2021). Three ways to solve partial 

differential equations with neural networks — A review. GAMM 

Mitteilungen, 44(2). 

Chang, Y., Yang, D., & He, X. (2024). A deep learning operator-based 

numerical scheme method for solving 1D wave equations. Journal 

of Geophysics and Engineering, 21(4), 1194–1215. 

Dalton, D., Husmeier, D., & Gao, H. (2023). Physics-informed graph 

neural network emulation of soft-tissue mechanics. Computer 

Methods in Applied Mechanics and Engineering, 417, 116351. 

El-Metwaly, A. R., & Kamal, M. A. (2024). A brief review of numerical 

methods for solving the boundary value problems of PDE. Journal 

of Physics: Conference Series, 2847(1). 



 

 

 

 

 

 

 

 

 

 

 

 

 

PINN Versus Classical Method for the 1D Heat Equation                                            Uddin et al. 

 

The Sciencetech                        239                    Volume 6, Issue 4, Oct-Dec 2025 

 

 

 

  

 

 

 

 

Guo, Y., Cao, X., Liu, B., & Gao, M. (2020). Solving partial differential 

equations using deep learning and physical constraints. Applied 

Sciences (Switzerland), 10(17). 

Gürbüz, B., & Fernandez, A. (2024). Numerical and Analytical Methods 

for Differential Equations and Systems. In Fractal and Fractional 

(Vol. 8, Issue 1). Multidisciplinary Digital Publishing Institute 

(MDPI).  

Hu, W. F., Lin, T. S., & Lai, M. C. (2022). A discontinuity capturing 

shallow neural network for elliptic interface problems. Journal of 

Computational Physics, 469. 

Jiang, Z., Jiang, J., Yao, Q., & Yang, G. (2023). A neural network-based 

PDE solving algorithm with high precision. Scientific Reports, 

13(1). 

Katsikis, D., Muradova, A. D., & Stavroulakis, G. E. (2022). A Gentle 

Introduction to Physics-Informed Neural Networks, with 

Applications in Static Rod and Beam Problems. Journal of 

Advances in Applied & Computational Mathematics, 9, 103–128. 

Lima, N. J., Matos, J. M. A., & Vasconcelos, P. B. (2024). Solving Partial 

Differential Problems with Tau Toolbox. Mathematics in 

Computer Science, 18(2). 

Luo, K., Zhao, J., Wang, Y., Li, J., Wen, J., Liang, J., Soekmadji, H., & 

Liao, S. (2025). Physics-informed neural networks for PDE 

problems: a comprehensive review. Artificial Intelligence Review, 

58(10). 

Maczuga, P., Sikora, M., Służalec, T., Szubert, M., Sztangret, Ł., Szeliga, 

D., Łoś, M., Dzwinel, W., Pingali, K., & Paszyński, M. (2025). 

Physics Informed Neural Network Code for 2D Transient 

Problems (PINN-2DT) Compatible with Google Colab. Lecture 

Notes in Computer Science, 15904 LNCS, 177–191. 

Tanyu, D. N., Ning, J., Freudenberg, T., Heilenkötter, N., Rademacher, 

A., Iben, U., & Maass, P. (2023). Deep learning methods for 

partial differential equations and related parameter identification 

problems. Inverse Problems, 39(10), 103001. 

Oh, H., & Jo, G. (2025). Physics-informed neural network for the heat 

equation under imperfect contact conditions and its error analysis. 

AIMS Mathematics, 10(4), 7920–7940. 

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed 

neural networks: A deep learning framework for solving forward 

and inverse problems involving nonlinear partial differential 

equations. Journal of Computational Physics, 378, 686–707. 



 

 

 

 

 

 

 

 

 

 

 

 

 

PINN Versus Classical Method for the 1D Heat Equation                                            Uddin et al. 

 

The Sciencetech                        240                    Volume 6, Issue 4, Oct-Dec 2025 

 

 

 

  

 

 

 

 

Raman, D. (2024). Numerical and analytical approaches to solving partial 

differential equations. International Journal of Engineering and 

Applied Sciences, 11(3), 9-12. 
Wei, M. (2025, June). Numerical Methods for Solving Partial Differential 

Equations. In Proceedings of the 2025 5th International 

Conference on Automation Control, Algorithm and Intelligent 

Bionics (pp. 274-277). 

Zhang, Z. (2025). Comparative Analysis of Finite Difference Method and 

Neural Network Models for Solving the One-Dimensional Heat 

Equal. Journal of Theory and Practice in Engineering and 

Technology, 2(5), 19–29. 


